The Effect of the Initial Stresses on the Reflection and Transmission of Plane Quasi-Vertical Transverse Waves in Piezoelectric Materials

This study deals with the phenomena of reflection and transmission (refraction) of qSV-waves, for an incident of quasi transverse vertically waves, at a plane interface of two semi-infinite piezoelectric elastic media under the influence of the initial stresses. The relations governing the reflection and transmission coefficients of these reflected waves for various suitable boundary conditions are derived. We have shown analytically that reflection and transmission coefficients of (qP) and (qSV) waves depend upon the angle of incidence, the parameters of electric potential, the material constants of the medium as will as the initial stresses presented in the media. The numerical calculations of the reflection and transmission amplitude ratios for different values of initial stresses have been carried out by computer for different materials as examples and the results are given in the form of graphs. Finally, some of particular cases are considered.

Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

A Fuzzy Approach for Delay Proportion Differentiated Service

There are two paradigms proposed to provide QoS for Internet applications: Integrated service (IntServ) and Differentiated service (DiffServ).Intserv is not appropriate for large network like Internet. Because is very complex. Therefore, to reduce the complexity of QoS management, DiffServ was introduced to provide QoS within a domain using aggregation of flow and per- class service. In theses networks QoS between classes is constant and it allows low priority traffic to be effected from high priority traffic, which is not suitable. In this paper, we proposed a fuzzy controller, which reduced the effect of low priority class on higher priority ones. Our simulations shows that, our approach reduces the latency dependency of low priority class on higher priority ones, in an effective manner.

Modelling of a Stress-Strain State of Screws of Transpedicular Spine Fixation System

For maintenance of a spine stability during the postoperative period a transpedicular fixing of its elements is often used. Usually the transpedicular systems are formed of rods which as a result form a design of the frame type, fastening by screws to vertebras. Such design should be rigid and perceive loadings operating from the spine without essential deformations. From the perfection point of view of known designs their stress whole, and each of elements, in particular is of interest. In this study the modeling of the transpedicular screw is performed and estimation of its deformations taking into account interaction with a vertebra body having variable structure is made.

A Model Predictive Control and Time Series Forecasting Framework for Supply Chain Management

Model Predictive Control has been previously applied to supply chain problems with promising results; however hitherto proposed systems possessed no information on future demand. A forecasting methodology will surely promote the efficiency of control actions by providing insight on the future. A complete supply chain management framework that is based on Model Predictive Control (MPC) and Time Series Forecasting will be presented in this paper. The proposed framework will be tested on industrial data in order to assess the efficiency of the method and the impact of forecast accuracy on overall control performance of the supply chain. To this end, forecasting methodologies with different characteristics will be implemented on test data to generate forecasts that will serve as input to the Model Predictive Control module.

Leisure and Perceived Wellness of Nursing Students: A Canonical Correlation Analysis

The purpose of this study was to explore the correlation between leisure participation and perceived wellness, with the students of a nursing college in southern Taiwan as the subjects. One thousand six hundred and ninety-six (1,696) surveys were sent, and 1,408 surveys were received for an 83.02% valid response rate. Using canonical correlation analysis to analyze the data, the results showed that the linear combination of the two sets of variable produces five significant canonical variates. Out of the five canonical variates, only the first has sufficient explanatory power. The canonical correlation coefficient of first canonical variate is 0.660. This indicated that leisure participation and perceived wellness are significantly correlated.

Evaluation of Optimum Performance of Lateral Intakes

In designing river intakes and diversion structures, it is paramount that the sediments entering the intake are minimized or, if possible, completely separated. Due to high water velocity, sediments can significantly damage hydraulic structures especially when mechanical equipment like pumps and turbines are used. This subsequently results in wasting water, electricity and further costs. Therefore, it is prudent to investigate and analyze the performance of lateral intakes affected by sediment control structures. Laboratory experiments, despite their vast potential and benefits, can face certain limitations and challenges. Some of these include: limitations in equipment and facilities, space constraints, equipment errors including lack of adequate precision or mal-operation, and finally, human error. Research has shown that in order to achieve the ultimate goal of intake structure design – which is to design longlasting and proficient structures – the best combination of sediment control structures (such as sill and submerged vanes) along with parameters that increase their performance (such as diversion angle and location) should be determined. Cost, difficulty of execution and environmental impacts should also be included in evaluating the optimal design. This solution can then be applied to similar problems in the future. Subsequently, the model used to arrive at the optimal design requires high level of accuracy and precision in order to avoid improper design and execution of projects. Process of creating and executing the design should be as comprehensive and applicable as possible. Therefore, it is important that influential parameters and vital criteria is fully understood and applied at all stages of choosing the optimal design. In this article, influential parameters on optimal performance of the intake, advantages and disadvantages, and efficiency of a given design are studied. Then, a multi-criterion decision matrix is utilized to choose the optimal model that can be used to determine the proper parameters in constructing the intake.

New Approach in Diagnostics Method for Milling Process using Envelope Analysis

This paper proposes a method to vibration analysis in order to on-line monitoring and predictive maintenance during the milling process. Adapting envelope method to diagnostics and the analysis for milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on Hilbert transform optimization to evaluate the dynamic behavior of the machine/ tool/workpiece.

Impulse Noise Reduction in Brain Magnetic Resonance Imaging Using Fuzzy Filters

Noise contamination in a magnetic resonance (MR) image could occur during acquisition, storage, and transmission in which effective filtering is required to avoid repeating the MR procedure. In this paper, an iterative asymmetrical triangle fuzzy filter with moving average center (ATMAVi filter) is used to reduce different levels of salt and pepper noise in a brain MR image. Besides visual inspection on filtered images, the mean squared error (MSE) is used as an objective measurement. When compared with the median filter, simulation results indicate that the ATMAVi filter is effective especially for filtering a higher level noise (such as noise density = 0.45) using a smaller window size (such as 3x3) when operated iteratively or using a larger window size (such as 5x5) when operated non-iteratively.

Social Marketing and Nonprofit Organizations

Today the social marketing was constituted as a tool of significant value in what he refers to the promotion of changes of behaviors, attitudes end practices. With the objective of analyzing the benefits that the social marketing can bring for the organizations that use it the research was of the exploratory and descriptive. In the present study the comparative method was used, through a qualitative approach, to analyze the activities developed by three institutions: the Recovery Center Rosa de Saron, the House of Recovery for addicts and Teen Challenge Institute Children's Cancer of the Wasteland (ICIA), kindred of pointing out the benefits of the social marketing in organizations that don-t seek the profit.

Photonic Crystals for Novel Applications in Integrated-Optic Communication Systems and Devices

Photonic Crystal (PhC) based devices are being increasingly used in multifunctional, compact devices in integrated optical communication systems. They provide excellent controllability of light, yet maintaining the small size required for miniaturization. In this paper, the band gap properties of PhCs and their typical applications in optical waveguiding are considered. Novel PhC based applications such as nonlinear switching and tapers are considered and simulation results are shown using the accurate time-domain numerical method based on Finite Difference Time Domain (FDTD) scheme. The suitability of these devices for novel applications is discussed and evaluated.

Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

An Optimal Control of Water Pollution in a Stream Using a Finite Difference Method

Water pollution assessment problems arise frequently in environmental science. In this research, a finite difference method for solving the one-dimensional steady convection-diffusion equation with variable coefficients is proposed; it is then used to optimize water treatment costs.

Software Industrialization in Systems Integration

Today-s economy is in a permanent change, causing merger and acquisitions and co operations between enterprises. As a consequence, process adaptations and realignments result in systems integration and software development projects. Processes and procedures to execute such projects are still reliant on craftsman-ship of highly skilled workers. A generally accepted, industrialized production, characterized by high efficiency and quality, seems inevitable. In spite of this, current concepts of software industrialization are aimed at traditional software engineering and do not consider the characteristics of systems integration. The present work points out these particularities and discusses the applicability of existing industrial concepts in the systems integration domain. Consequently it defines further areas of research necessary to bring the field of systems integration closer to an industrialized production, allowing a higher efficiency, quality and return on investment.

Evaluation of Electronic Payment Systems Using Fuzzy Multi-Criteria Decision Making Approach

Global competitiveness has recently become the biggest concern of both manufacturing and service companies. Electronic commerce, as a key technology enables the firms to reach all the potential consumers from all over the world. In this study, we have presented commonly used electronic payment systems, and then we have shown the evaluation of these systems in respect to different criteria. The payment systems which are included in this research are the credit card, the virtual credit card, the electronic money, the mobile payment, the credit transfer and the debit instruments. We have realized a systematic comparison of these systems in respect to three main criteria: Technical, economical and social. We have conducted a fuzzy multi-criteria decision making procedure to deal with the multi-attribute nature of the problem. The subjectiveness and imprecision of the evaluation process are modeled using triangular fuzzy numbers.

Hydrated Magnesium Borate Synthesis from MgCl2.6H2O at 80oC by Hydrothermal Method

Borate minerals have attracted considerable attention in the past years due to their structural chemistry and mechanical properties in several industries. Recently, increasing attention has been paid to the use of; synthetically produced magnesium borates as catalysts reinforcing material for plastics, the conversion of hydrocarbons, electro-conductive treating agent, anti-wear and anti-corrosion materials. Magnesium borates can be synthesized by several methods such as; hydrothermal and solid-state (thermal) processes. In this study the hydrothermal production method was applied at the modest temperature of 80C along with convenient crystal growth. Using MgCl2.6H2O, H3BO3, and NaOH as starting materials, 30, 60, 120, 240 minutes of reaction times were studied. After all, the crystal structure and the morphology of the products were examined by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). As a result the forms of Admontite and Mcallisterite minerals were synthesized.

Binary Decision Diagrams: An Improved Variable Ordering using Graph Representation of Boolean Functions

This paper presents an improved variable ordering method to obtain the minimum number of nodes in Reduced Ordered Binary Decision Diagrams (ROBDD). The proposed method uses the graph topology to find the best variable ordering. Therefore the input Boolean function is converted to a unidirectional graph. Three levels of graph parameters are used to increase the probability of having a good variable ordering. The initial level uses the total number of nodes (NN) in all the paths, the total number of paths (NP) and the maximum number of nodes among all paths (MNNAP). The second and third levels use two extra parameters: The shortest path among two variables (SP) and the sum of shortest path from one variable to all the other variables (SSP). A permutation of the graph parameters is performed at each level for each variable order and the number of nodes is recorded. Experimental results are promising; the proposed method is found to be more effective in finding the variable ordering for the majority of benchmark circuits.

Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates

Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared for three types of materials. In the analysis, the tensile and the compressive stresses are summarized for various FGM thickness ratios, volume fraction distributions, geometric parameters and mechanical loads.

Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System

The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.

On Developing an Automatic Speech Recognition System for Standard Arabic Language

The Automatic Speech Recognition (ASR) applied to Arabic language is a challenging task. This is mainly related to the language specificities which make the researchers facing multiple difficulties such as the insufficient linguistic resources and the very limited number of available transcribed Arabic speech corpora. In this paper, we are interested in the development of a HMM-based ASR system for Standard Arabic (SA) language. Our fundamental research goal is to select the most appropriate acoustic parameters describing each audio frame, acoustic models and speech recognition unit. To achieve this purpose, we analyze the effect of varying frame windowing (size and period), acoustic parameter number resulting from features extraction methods traditionally used in ASR, speech recognition unit, Gaussian number per HMM state and number of embedded re-estimations of the Baum-Welch Algorithm. To evaluate the proposed ASR system, a multi-speaker SA connected-digits corpus is collected, transcribed and used throughout all experiments. A further evaluation is conducted on a speaker-independent continue SA speech corpus. The phonemes recognition rate is 94.02% which is relatively high when comparing it with another ASR system evaluated on the same corpus.