A 1.8 V RF CMOS Active Inductor with 0.18 um CMOS Technology

A active inductor in CMOS techonology with a supply voltage of 1.8V is presented. The value of the inductance L can be in the range from 0.12nH to 0.25nH in high frequency(HF). The proposed active inductor is designed in TSMC 0.18-um CMOS technology. The power dissipation of this inductor can retain constant at all operating frequency bands and consume around 20mW from 1.8V power supply. Inductors designed by integrated circuit occupy much smaller area, for this reason,attracted researchers attention for more than decade. In this design we used Advanced Designed System (ADS) for simulating cicuit.

Cost and Productivity Experiences of Pakistan with Aggregate Learning Curve

The principal focus of this study is on the measurement and analysis of labor learnings in Pakistan. The study at the aggregate economy level focus on the labor productivity movements and at large-scale manufacturing level focus on the cost structure, with isolating the contribution of the learning curve. The analysis of S-shaped curve suggests that learnings are only below one half of aggregate learning curve and other half shows the retardation in learning, hence retardation in productivity movements. The study implies the existence of learning economies in term of cost reduction that is input cost per unit produced decreases by 0.51 percent every time the cumulative production output doubles.

Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach

A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

A Study of DSRC Radio Testbed under Heavy Channel Load

Dedicated Short Range Communication (DSRC) is a key enabling technology for the next generation of communication-based safety applications. One of the important problems for DSRC deployment is maintaining high performance under heavy channel load. Many studies focus on congestion control mechanisms for simulating hundreds of physical radios deployed on vehicles. The U.S. department of transportation-s (DOT) Intelligent Transportation Systems (ITS) division has a plan to chosen prototype on-board devices capable of transmitting basic “Here I am" safety messages to other vehicles. The devices will be used in an IntelliDrive safety pilot deployment of up to 3,000 vehicles. It is hard to log the information of 3,000 vehicles. In this paper we present the designs and issues related to the DSRC Radio Testbed under heavy channel load. The details not only include the architecture of DSRC Radio Testbed, but also describe how the Radio Interfere System is used to help for emulating the congestion radio environment.

Seismic Vulnerability Assessment of Buildings in Algiers Area

Several models of vulnerability assessment have been proposed. The selection of one of these models depends on the objectives of the study. The classical methodologies for seismic vulnerability analysis, as a part of seismic risk analysis, have been formulated with statistical criteria based on a rapid observation. The information relating to the buildings performance is statistically elaborated. In this paper, we use the European Macroseismic Scale EMS-98 to define the relationship between damage and macroseismic intensity to assess the seismic vulnerability. Applying to Algiers area, the first step is to identify building typologies and to assign vulnerability classes. In the second step, damages are investigated according to EMS-98.

Real-Time Physics Simulation Packages: An Evaluation Study

This paper includes a review of three physics simulation packages that can be used to provide researchers with a virtual ground for modeling, implementing and simulating complex models, as well as testing their control methods with less cost and time of development. The inverted pendulum model was used as a test bed for comparing ODE, DANCE and Webots, while Linear State Feedback was used to control its behavior. The packages were compared with respect to model creation, solving systems of differential equation, data storage, setting system variables, control the experiment and ease of use. The purpose of this paper is to give an overview about our experience with these environments and to demonstrate some of the benefits and drawbacks involved in practice for each package.

Are Economic Crises and Government Changes Related? A Descriptive Statistic Analysis

The main purpose of this study is to provide a detailed statistical overview of the time and regional distribution, relative timing occurrence of economic crises and government changes in 51 economies over the 1990–2007 periods. At the same time, the predictive power of the economic crises on set government changes will be examined using “signal approach". The result showed that the percentage of government changes is highest in transition economies (86 percent of observations) and lowest in Latin American economies (39 percent of observations). The percentages of government changes are same in both developed and developing countries (43 percent of observations). However, average crises per year (frequency of crises) are higher (lower) in developing (developed) countries than developed (developing) countries. Also, the predictive power of economic crises about the onset of a government change is highest in Transition economies (81 percent) and lowest in Latin American countries (30 percent). The predictive power of economic crises in developing countries (43 percent) is lower than developed countries (55 percent).

The Performance Analysis of Valveless Micropump with Contoured Nozzle/Diffuser

The operation performance of a valveless micro-pump is strongly dependent on the shape of connected nozzle/diffuser and Reynolds number. The aims of present work are to compare the performance curves of micropump with the original straight nozzle/diffuser and contoured nozzle/diffuser under different back pressure conditions. The tested valveless micropumps are assembled of five pieces of patterned PMMA plates with hot-embracing technique. The structures of central chamber, the inlet/outlet reservoirs and the connected nozzle/diffuser are fabricated with laser cutting machine. The micropump is actuated with circular-type PZT film embraced on the bottom of central chamber. The deformation of PZT membrane with various input voltages is measured with a displacement laser probe. A simple testing facility is also constructed to evaluate the performance curves for comparison. In order to observe the evaluation of low Reynolds number multiple vortex flow patterns within the micropump during suction and pumping modes, the unsteady, incompressible laminar three-dimensional Reynolds-averaged Navier-Stokes equations are solved. The working fluid is DI water with constant thermo-physical properties. The oscillating behavior of PZT film is modeled with the moving boundary wall in way of UDF program. With the dynamic mesh method, the instants pressure and velocity fields are obtained and discussed.Results indicated that the volume flow rate is not monotony increased with the oscillating frequency of PZT film, regardless of the shapes of nozzle/diffuser. The present micropump can generate the maximum volume flow rate of 13.53 ml/min when the operation frequency is 64Hz and the input voltage is 140 volts. The micropump with contoured nozzle/diffuser can provide 7ml/min flow rate even when the back pressure is up to 400 mm-H2O. CFD results revealed that the flow central chamber was occupied with multiple pairs of counter-rotating vortices during suction and pumping modes. The net volume flow rate over a complete oscillating periodic of PZT

Apoptosis Induced by Low-concentration Ethanol in Hepatocellular Carcinoma Cell Strains and Down-regulated AFP and Survivin Analysis by Proteomic Technology

Ethanol is generally used as a therapeutic reagent against Hepatocellular carcinoma (HCC or hepatoma) worldwide, as it can induce Hepatocellular carcinoma cell apoptosis at low concentration through a multifactorial process regulated by several unknown proteins. This paper provides a simple and available proteomic strategy for exploring differentially expressed proteins in the apoptotic pathway. The appropriate concentrations of ethanol required to induce HepG2 cell apoptosis were first assessed by MTT assay, Gisma and fluorescence staining. Next, the central proteins involved in the apoptosis pathway processs were determined using 2D-PAGE, SDS-PAGE, and bio-software analysis. Finally the downregulation of two proteins, AFP and survivin, were determined by immunocytochemistry and reverse transcriptase PCR (RT-PCR) technology. The simple, useful method demonstrated here provides a new approach to proteomic analysis in key bio-regulating process including proliferation, differentiation, apoptosis, immunity and metastasis.

Increasing of Energy Efficiency based on Persian Ancient Architectural Patterns in Desert Regions (Case Study Of Traditional Houses In Kashan)

In general architecture means the art of creating the space. Comprehensive and complete body which is created by a creative and purposeful thought to respond the human needs. Professionally, architecture is the are of designing and comprehensive planning of physical spaces that is created for human-s productivity. The purpose of architectural design is to respond the human needs which is appeared in physical frame. Human in response to his needs is always looking to achieve comfort. Throughout history of human civilization this relative comfort has been inspired by nature and assimilating the facility and natural achievement in the format of artifact patterns base on the nature, so that it is achieved in this comfort level and invention of these factors. All physical factors like regional, social and economical factors are made available to human in order to achieve a specific goal and are made to gain an ideal architecture to respond the functional needs and consider the aesthetics and elemental principles and pay attention to residents- comfort. In this study the Persian architecture with exploiting and transforming the energies into the requisite energies of architecture spaces and importing fuel products, utilities, etc, in order to achieve a relative comfort level will be investigated. In this paper the study of structural and physical specialties of traditional houses in desert regions and Central Plateau of Iran gave us this opportunity to being more familiar with important specialties of energy productivity in architecture body of traditional houses in these regions specially traditional houses of Kashan and in order to use these principles to create modern architectures in these regions.

An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Vortex Wake Formation and Its Effects on Thrust and Propulsive Efficiency of an Oscillating Airfoil

Flows over a harmonically oscillating NACA 0012 airfoil are simulated here using a two-dimensional, unsteady, incompressibleNavier-Stokes solver.Both pure-plunging and pitching-plunging combined oscillations are considered at a Reynolds number of 5000. Special attention is paid to the vortex shedding and interaction mechanism of the motions. For all the simulations presented here, the reduced frequency (k) is fixed at a value of 2.5 and plunging amplitude (h) is selected to be in the range of 0.2-0.5. The simulation results show that the interaction mechanism between the leading and trailing edge vortices has a decisive effect on the values of the resulting thrust and propulsive efficiency.

Modeling Concave Globoidal Cam with Swinging Roller Follower : A Case Study

This paper describes a computer-aided design for design of the concave globoidal cam with cylindrical rollers and swinging follower. Four models with different modeling methods are made from the same input data. The input data are angular input and output displacements of the cam and the follower and some other geometrical parameters of the globoidal cam mechanism. The best cam model is the cam which has no interference with the rollers when their motions are simulated in assembly conditions. The angular output displacement of the follower for the best cam is also compared with that of in the input data to check errors. In this study, Pro/ENGINEER® Wildfire 2.0 is used for modeling the cam, simulating motions and checking interference and errors of the system.

A New Approach for Prioritization of Failure Modes in Design FMEA using ANOVA

The traditional Failure Mode and Effects Analysis (FMEA) uses Risk Priority Number (RPN) to evaluate the risk level of a component or process. The RPN index is determined by calculating the product of severity, occurrence and detection indexes. The most critically debated disadvantage of this approach is that various sets of these three indexes may produce an identical value of RPN. This research paper seeks to address the drawbacks in traditional FMEA and to propose a new approach to overcome these shortcomings. The Risk Priority Code (RPC) is used to prioritize failure modes, when two or more failure modes have the same RPN. A new method is proposed to prioritize failure modes, when there is a disagreement in ranking scale for severity, occurrence and detection. An Analysis of Variance (ANOVA) is used to compare means of RPN values. SPSS (Statistical Package for the Social Sciences) statistical analysis package is used to analyze the data. The results presented are based on two case studies. It is found that the proposed new methodology/approach resolves the limitations of traditional FMEA approach.

STRPRO Tool for Manipulation of Stratified Programs Based on SEPN

Negation is useful in the majority of the real world applications. However, its introduction leads to semantic and canonical problems. SEPN nets are well adapted extension of predicate nets for the definition and manipulation of stratified programs. This formalism is characterized by two main contributions. The first concerns the management of the whole class of stratified programs. The second contribution is related to usual operations optimization (maximal stratification, incremental updates ...). We propose, in this paper, useful algorithms for manipulating stratified programs using SEPN. These algorithms were implemented and validated with STRPRO tool.

A New Vision of Fractal Geometry with Triangulati on Algorithm

L-system is a tool commonly used for modeling and simulating the growth of fractal plants. The aim of this paper is to join some problems of the computational geometry with the fractal geometry by using the L-system technique to generate fractal plant in 3D. L-system constructs the fractal structure by applying rewriting rules sequentially and this technique depends on recursion process with large number of iterations to get different shapes of 3D fractal plants. Instead, it was reiterated a specific number of iterations up to three iterations. The vertices generated from the last stage of the Lsystem rewriting process are used as input to the triangulation algorithm to construct the triangulation shape of these vertices. The resulting shapes can be used as covers for the architectural objects and in different computer graphics fields. The paper presents a gallery of triangulation forms which application in architecture creates an alternative for domes and other traditional types of roofs.

An Experimental Investigation on the Behavior of Pressure Tube under Symmetrical and Asymmetrical Heating Conditions in an Indian PHWR

Thermal behavior of fuel channel under loss of coolant accident (LOCA) is a major concern for nuclear reactor safety. LOCA along with failure of emergency cooling water system (ECC) may leads to mechanical deformations like sagging and ballooning. In order to understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of Indian Pressurized Heavy Water Reactor (IPHWR) under symmetrical and asymmetrical heat-up conditions. For simulating the fully voided scenario, symmetrical heating of pressure was carried out by injecting 13.2 KW (2 % of nominal power) to all the 19 pins and the temperatures of pressure tube, calandria tube and clad tubes were measured. During symmetrical heating the sagging of fuel channel was initiated at 460 °C and the highest temperature attained by PT was 650 °C . The decay heat from clad tubes was dissipated to moderator mainly by radiation and natural convection. The highest temperature of 680 °C was observed over the outer ring of clad tubes of fuel simulator. Again, to simulate partially voided condition, asymmetrical heating of pressure was carried out by supplying 8.0 kW power to upper 8 pins of fuel simulator and temperature profiles were measured. Along the circumference of pressure tube (PT) the highest temperature difference of 320 °C was observed, which highlights the magnitude of thermal stresses under partially voided conditions.

Using Ultrasonic and Infrared Sensors for Distance Measurement

The amplitude response of infrared (IR) sensors depends on the reflectance properties of the target. Therefore, in order to use IR sensor for measuring distances accurately, prior knowledge of the surface must be known. This paper describes the Phong Illumination Model for determining the properties of a surface and subsequently calculating the distance to the surface. The angular position of the IR sensor is computed as normal to the surface for simplifying the calculation. Ultrasonic (US) sensor can provide the initial information on distance to obtain the parameters for this method. In addition, the experimental results obtained by using LabView are discussed. More care should be taken when placing the objects from the sensors during acquiring data since the small change in angle could show very different distance than the actual one. Since stereo camera vision systems do not perform well under some environmental conditions such as plain wall, glass surfaces, or poor lighting conditions, the IR and US sensors can be used additionally to improve the overall vision systems of mobile robots.

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment

The selective recovery of heavy metals of Cu, Zn, Ni and Cr from a mixed plating sludge by sulfidation and oxidation treatment was targeted in this study. At first, the mixed plating sludge was simultaneously subjected to an extraction and Cu sulfidation process at pH=1.5 to dissolve heavy metals and to precipitate Cu2+ as CuS. In the next step, the sulfidation treatment of Zn was carried out at pH=4.5 and the residual solution was subjected to an oxidation treatment of chromium with H2O2 at pH=10.0. After the experiments, the selectivity of metal precipitation and the chromium oxidation ratio were evaluated. As results, it was found that the filter cake obtained after selective sulfidation of Cu was composed of 96.6% of Cu (100% equals to the sum of Cu, Zn, Ni and Cr contents). Such findings confirmed that almost complete extraction of heavy metals was achieved at pH=1.5 and also that Cu could be selectively recovered as CuS. Further, the filter cake obtained at pH=4.5 was composed of 91.5% Zn and 6.83% of Cr. Regarding the chromium oxidation step, the chromium oxidation ratio was found to increase with temperature and the addition of oxidation agent of H2O2, but only oxidation ratio of 59% was achieved at a temperature of 60°C and H2O2 to Cr3+ equivalent ratio of 180.

Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.