Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks

A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.

Robust Detection of R-Wave Using Wavelet Technique

Electrocardiogram (ECG) is considered to be the backbone of cardiology. ECG is composed of P, QRS & T waves and information related to cardiac diseases can be extracted from the intervals and amplitudes of these waves. The first step in extracting ECG features starts from the accurate detection of R peaks in the QRS complex. We have developed a robust R wave detector using wavelets. The wavelets used for detection are Daubechies and Symmetric. The method does not require any preprocessing therefore, only needs the ECG correct recordings while implementing the detection. The database has been collected from MIT-BIH arrhythmia database and the signals from Lead-II have been analyzed. MatLab 7.0 has been used to develop the algorithm. The ECG signal under test has been decomposed to the required level using the selected wavelet and the selection of detail coefficient d4 has been done based on energy, frequency and cross-correlation analysis of decomposition structure of ECG signal. The robustness of the method is apparent from the obtained results.

Structure and Functions of Urban Surface Water System in Coastal Areas: The Case of Almere

In the context of global climate change, flooding and sea level rise is increasingly threatening coastal urban areas, in which large population is continuously concentrated. Dutch experiences in urban water system management provide high reference value for sustainable coastal urban development projects. Preliminary studies shows the urban water system in Almere, a typical Dutch polder city, have three kinds of operational modes, achieving functions as: (1) coastline control – strong multiple damming system prevents from storm surges and maintains sufficient capacity upon risks; (2) high flexibility – large area and widely scattered open water system greatly reduce local runoff and water level fluctuation; (3) internal water maintenance – weir and sluice system maintains relatively stable water level, providing excellent boating and landscaping service, coupling with water circulating model maintaining better water quality. Almere has provided plenty of hints and experiences for ongoing development of coastal cities in emerging economies.

A Numerical Simulation of Solar Distillation for Installation in Chabahar-Iran

The world demand for potable water is increasing every day with growing population. Desalination using solar energy is suitable for potable water production from brackish and seawater. In this paper, we present a theoretical study of solar distillation in a single basin under the open environmental conditions of Chabahar-Iran. The still has a base area of 2000mm×500mm with a glass cover inclined at 25° in order to obtain extra solar energy. We model the still and conduct its energy balance equations under minor assumptions. We computed the temperatures of glass cover, seawater interface, moist air and bottom using numerical method. The investigation addressed the following: The still productivity, distilled water salinity and still performance in terms of the still efficiency. Calculated still productivity in July was higher than December. So in this paper, we show that still productivity is directly functioning of solar radiation.

A High-Frequency Low-Power Low-Pass-Filter-Based All-Current-Mirror Sinusoidal Quadrature Oscillator

A high-frequency low-power sinusoidal quadrature oscillator is presented through the use of two 2nd-order low-pass current-mirror (CM)-based filters, a 1st-order CM low-pass filter and a CM bilinear transfer function. The technique is relatively simple based on (i) inherent time constants of current mirrors, i.e. the internal capacitances and the transconductance of a diode-connected NMOS, (ii) a simple negative resistance RN formed by a resistor load RL of a current mirror. Neither external capacitances nor inductances are required. As a particular example, a 1.9-GHz, 0.45-mW, 2-V CMOS low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator is demonstrated. The oscillation frequency (f0) is 1.9 GHz and is current-tunable over a range of 370 MHz or 21.6 %. The power consumption is at approximately 0.45 mW. The amplitude matching and the quadrature phase matching are better than 0.05 dB and 0.15°, respectively. Total harmonic distortions (THD) are less than 0.3 %. At 2 MHz offset from the 1.9 GHz, the carrier to noise ratio (CNR) is 90.01 dBc/Hz whilst the figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 153.03 dBc/Hz. The ratio of the oscillation frequency (f0) to the unity-gain frequency (fT) of a transistor is 0.25. Comparisons to other approaches are also included.

A New Method in Short-Term Heart Rate Variability — Five-Class Density Histogram

A five-class density histogram with an index named cumulative density was proposed to analyze the short-term HRV. 150 subjects participated in the test, falling into three groups with equal numbers -- the healthy young group (Young), the healthy old group (Old), and the group of patients with congestive heart failure (CHF). Results of multiple comparisons showed a significant differences of the cumulative density in the three groups, with values 0.0238 for Young, 0.0406 for Old and 0.0732 for CHF (p

A Study of Thai Muslims’ Way of Life through Their Clothes

The purpose of this research was to investigate Thai Muslims’ way of life through the way their clothes. The data of this qualitative research were collected from related documents and research reports, ancient cloths and clothing, and in-depth interviews with clothes owners and weavers. The research found that in the 18th century Thai Muslims in the three southern border provinces used many types of clothing in their life. At home women wore plain clothes. They used checked cloths to cover the upper part of their body from the breasts down to the waist. When going out, they used Lima cloth and So Kae with a piece of Pla-nging cloth as a head scarf. For men, they wore a checked sarong as a lower garment, and wore no upper garment. However, when going out, they wore Puyo Potong. In addition, Thai Muslims used cloths in various religious rites, namely, the rite of placing a baby in a cradle, the Masoyawi rite, the Nikah rite, and the burial rite. These types of cloths were related to the way of life of Thai Muslims from birth to death. They reflected the race, gender, age, social status, values, and beliefs in traditions that have been inherited. Practical Implication: Woven in these cloths are the lost local wisdom, and therefore, aesthetics on the cloths are like mirrors reflecting the background of people in this region that is fading away. These cloths are pages of a local history book that is of importance and value worth for preservation and publicity so that they are treasured. Government organizations can expand and materialize the knowledge received from the study in accordance with government policy in supporting the One Tambon, One Product project.

Lean Changeability – Evaluation and Design of Lean and Transformable Factories

In today-s turbulent environment, companies are faced with two principal challenges. On the one hand, it is necessary to produce ever more cost-effectively to remain competitive. On the other hand, factories need to be transformable in order to manage unpredictable changes in the corporate environment. To deal with these different challenges, companies use the philosophy of lean production in the first case, in the second case the philosophy of transformability. To a certain extent these two approaches follow different directions. This can cause conflicts when designing factories. Therefore, the Institute of Production Systems and Logistics (IFA) of the Leibniz University of Hanover has developed a procedure to allow companies to evaluate and design their factories with respect to the requirements of both philosophies.

Neural Adaptive Switching Control of Robotic Systems

In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.

Some (v + 1, b + r + λ + 1, r + λ + 1, k, λ + 1) Balanced Incomplete Block Designs (BIBDs) from Lotto Designs (LDs)

The paper considered the construction of BIBDs using potential Lotto Designs (LDs) earlier derived from qualifying parent BIBDs. The study utilized Li’s condition  pr t−1  ( t−1 2 ) + pr− pr t−1 (t−1) 2  < ( p 2 ) λ, to determine the qualification of a parent BIBD (v, b, r, k, λ) as LD (n, k, p, t) constrained on v ≥ k, v ≥ p, t ≤ min{k, p} and then considered the case k = t since t is the smallest number of tickets that can guarantee a win in a lottery. The (15, 140, 28, 3, 4) and (7, 7, 3, 3, 1) BIBDs were selected as parent BIBDs to illustrate the procedure. These BIBDs yielded three potential LDs each. Each of the LDs was completely generated and their properties studied. The three LDs from the (15, 140, 28, 3, 4) produced (9, 84, 28, 3, 7), (10, 120, 36, 3, 8) and (11, 165, 45, 3, 9) BIBDs while those from the (7, 7, 3, 3, 1) produced the (5, 10, 6, 3, 3), (6, 20, 10, 3, 4) and (7, 35, 15, 3, 5) BIBDs. The produced BIBDs follow the generalization (v + 1, b + r + λ + 1, r +λ+1, k, λ+1) where (v, b, r, k, λ) are the parameters of the (9, 84, 28, 3, 7) and (5, 10, 6, 3, 3) BIBDs. All the BIBDs produced are unreduced designs.

Intellectual Capital Report for Universities

Intellectual capital reporting becomes critical at universities, mainly due to the fact that knowledge is the main output as well as input in these institutions. In addition, universities have continuous external demands for greater information and transparency about the use of public funds, and are increasingly provided with greater autonomy regarding their organization, management, and budget allocation. This situation requires new management and reporting systems. The purpose of the present study is to provide a model for intellectual capital report in Spanish universities. To this end, a questionnaire was sent to every member of the Social Councils of Spanish public universities in order to identify which intangible elements university stakeholders demand most. Our proposal for an intellectual capital report aims to act as a guide to help the Spanish universities on the road to the presentation of information on intellectual capital which can assist stakeholders to make the right decisions.

A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor

This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.

Multi-stage Directional Median Filter

Median filter is widely used to remove impulse noise without blurring sharp edges. However, when noise level increased, or with thin edges, median filter may work poorly. This paper proposes a new filter, which will detect edges along four possible directions, and then replace noise corrupted pixel with estimated noise-free edge median value. Simulations show that the proposed multi-stage directional median filter can provide excellent performance of suppressing impulse noise in all situations.

A Novel Convergence Accelerator for the LMS Adaptive Algorithm

The least mean square (LMS) algorithmis one of the most well-known algorithms for mobile communication systems due to its implementation simplicity. However, the main limitation is its relatively slow convergence rate. In this paper, a booster using the concept of Markov chains is proposed to speed up the convergence rate of LMS algorithms. The nature of Markov chains makes it possible to exploit the past information in the updating process. Moreover, since the transition matrix has a smaller variance than that of the weight itself by the central limit theorem, the weight transition matrix converges faster than the weight itself. Accordingly, the proposed Markov-chain based booster thus has the ability to track variations in signal characteristics, and meanwhile, it can accelerate the rate of convergence for LMS algorithms. Simulation results show that the LMS algorithm can effectively increase the convergence rate and meantime further approach the Wiener solution, if the Markov-chain based booster is applied. The mean square error is also remarkably reduced, while the convergence rate is improved.

Comparative Study of Complexity in Streetscape Composition

This research is a comparative study of complexity, as a multidimensional concept, in the context of streetscape composition in Algeria and Japan. 80 streetscapes visual arrays have been collected and then presented to 20 participants, with different cultural backgrounds, in order to be categorized and classified according to their degrees of complexity. Three analysis methods have been used in this research: cluster analysis, ranking method and Hayashi Quantification method (Method III). The results showed that complexity, disorder, irregularity and disorganization are often conflicting concepts in the urban context. Algerian daytime streetscapes seem to be balanced, ordered and regular, and Japanese daytime streetscapes seem to be unbalanced, regular and vivid. Variety, richness and irregularity with some aspects of order and organization seem to characterize Algerian night streetscapes. Japanese night streetscapes seem to be more related to balance, regularity, order and organization with some aspects of confusion and ambiguity. Complexity characterized mainly Algerian avenues with green infrastructure. Therefore, for Japanese participants, Japanese traditional night streetscapes were complex. And for foreigners, Algerian and Japanese avenues nightscapes were the most complex visual arrays.

The Role of Knowledge Management in Enterprise 2.0

The term Enterprise 2.0 (E2.0) describes a collection of organizational and IT practices that help organizations establish flexible work models, visible knowledge-sharing practices, and higher levels of community participation. E2.0 parallels and builds on another term commonly being used in the industry – Web 2.0. E2.0 represents also new packaging for strategic collaboration and Knowledge Management (KM). Organizations rely on collaboration and KM initiatives to attain innovation, growth, productivity, and performance goals.

A State Aggregation Approach to Singularly Perturbed Markov Reward Processes

In this paper, we propose a single sample path based algorithm with state aggregation to optimize the average rewards of singularly perturbed Markov reward processes (SPMRPs) with a large scale state spaces. It is assumed that such a reward process depend on a set of parameters. Differing from the other kinds of Markov chain, SPMRPs have their own hierarchical structure. Based on this special structure, our algorithm can alleviate the load in the optimization for performance. Moreover, our method can be applied on line because of its evolution with the sample path simulated. Compared with the original algorithm applied on these problems of general MRPs, a new gradient formula for average reward performance metric in SPMRPs is brought in, which will be proved in Appendix, and then based on these gradients, the schedule of the iteration algorithm is presented, which is based on a single sample path, and eventually a special case in which parameters only dominate the disturbance matrices will be analyzed, and a precise comparison with be displayed between our algorithm with the old ones which is aim to solve these problems in general Markov reward processes. When applied in SPMRPs, our method will approach a fast pace in these cases. Furthermore, to illustrate the practical value of SPMRPs, a simple example in multiple programming in computer systems will be listed and simulated. Corresponding to some practical model, physical meanings of SPMRPs in networks of queues will be clarified.

Relationship among Leisure Satisfaction, Spiritual Wellness, and Self-Esteem of Older Adults

This study sought to determine whether there were relationships existed among leisure satisfaction, self-esteem, and spiritual wellness. Four hundred survey instruments were distributed, and 334 effective instruments were returned, for an effective rate of 83.5%. The participants were recruited from a purposive sampling that subjects were at least 60 years of age and retired in Tainan City, Taiwan. Three instruments were used in this research: Leisure Satisfaction Scale (LSS), Self-Esteem Scale (SES), and Spirituality Assessment Scale (SAS). The collected data were analyzed statistically. The findings of this research were as follows: 1. There is significantly correlated between leisure satisfaction and spiritual wellness. 2. There is significantly correlated between leisure satisfaction and self-esteem. 3. There is significantly correlated between spiritual wellness and self-esteem.

Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405

Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed.

Fast Painting with Different Colors Using Cross Correlation in the Frequency Domain

In this paper, a new technique for fast painting with different colors is presented. The idea of painting relies on applying masks with different colors to the background. Fast painting is achieved by applying these masks in the frequency domain instead of spatial (time) domain. New colors can be generated automatically as a result from the cross correlation operation. This idea was applied successfully for faster specific data (face, object, pattern, and code) detection using neural algorithms. Here, instead of performing cross correlation between the input input data (e.g., image, or a stream of sequential data) and the weights of neural networks, the cross correlation is performed between the colored masks and the background. Furthermore, this approach is developed to reduce the computation steps required by the painting operation. The principle of divide and conquer strategy is applied through background decomposition. Each background is divided into small in size subbackgrounds and then each sub-background is processed separately by using a single faster painting algorithm. Moreover, the fastest painting is achieved by using parallel processing techniques to paint the resulting sub-backgrounds using the same number of faster painting algorithms. In contrast to using only faster painting algorithm, the speed up ratio is increased with the size of the background when using faster painting algorithm and background decomposition. Simulation results show that painting in the frequency domain is faster than that in the spatial domain.