Vehicle Velocity Estimation for Traffic Surveillance System

This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.

Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines

This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.

Analysis of Complex Quadrature Mirror Filter Banks

This work consists of three parts. First, the alias-free condition for the conventional two-channel quadrature mirror filter bank is analyzed using complex arithmetic. Second, the approach developed in the first part is applied to the complex quadrature mirror filter bank. Accordingly, the structure is simplified and the theory is easier to follow. Finally, a new class of complex quadrature mirror filter banks is proposed. Interesting properties of this new structure are also discussed.

Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization

This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.

One-Class Support Vector Machines for Aerial Images Segmentation

Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.

Automatic Generation of OWL Ontologies from UML Class Diagrams Based on Meta- Modelling and Graph Grammars

Models are placed by modeling paradigm at the center of development process. These models are represented by languages, like UML the language standardized by the OMG which became necessary for development. Moreover the ontology engineering paradigm places ontologies at the center of development process; in this paradigm we find OWL the principal language for knowledge representation. Building ontologies from scratch is generally a difficult task. The bridging between UML and OWL appeared on several regards such as the classes and associations. In this paper, we have to profit from convergence between UML and OWL to propose an approach based on Meta-Modelling and Graph Grammars and registered in the MDA architecture for the automatic generation of OWL ontologies from UML class diagrams. The transformation is based on transformation rules; the level of abstraction in these rules is close to the application in order to have usable ontologies. We illustrate this approach by an example.

Towards a Measurement-Based E-Government Portals Maturity Model

The e-government emerging concept transforms the way in which the citizens are dealing with their governments. Thus, the citizens can execute the intended services online anytime and anywhere. This results in great benefits for both the governments (reduces the number of officers) and the citizens (more flexibility and time saving). Therefore, building a maturity model to assess the egovernment portals becomes desired to help in the improvement process of such portals. This paper aims at proposing an egovernment maturity model based on the measurement of the best practices’ presence. The main benefit of such maturity model is to provide a way to rank an e-government portal based on the used best practices, and also giving a set of recommendations to go to the higher stage in the maturity model.

Spatial Structure and Spatial Impacts of the Jakarta Metropolitan Area: A Southeast Asian EMR Perspective

This paper investigates the spatial structure of employment in the Jakarta Metropolitan Area (JMA), with reference to the concept of the Southeast Asian extended metropolitan region (EMR). A combination of factor analysis and local Getis-Ord (Gi*) hot-spot analysis is used to identify clusters of employment in the region, including those of the urban and agriculture sectors. Spatial statistical analysis is further used to probe the spatial association of identified employment clusters with their surroundings on several dimensions, including the spatial association between the central business district (CBD) in Jakarta city on employment density in the region, the spatial impacts of urban expansion on population growth and the degree of urban-rural interaction. The degree of spatial interaction for the whole JMA is measured by the patterns of commuting trips destined to the various employment clusters. Results reveal the strong role of the urban core of Jakarta, and the regional CBD, as the centre for mixed job sectors such as retail, wholesale, services and finance. Manufacturing and local government services, on the other hand, form corridors radiating out of the urban core, reaching out to the agriculture zones in the fringes. Strong associations between the urban expansion corridors and population growth, and urban-rural mix, are revealed particularly in the eastern and western parts of JMA. Metropolitan wide commuting patterns are focussed on the urban core of Jakarta and the CBD, while relatively local commuting patterns are shown to be prevalent for the employment corridors.

Urban Management and China's Municipal Pattern

Not only is municipal pattern the institution basement of urban management, but it also determines the forms of the management results. There-s a considerable possibility of bankruptcy for China-s current municipal pattern as it-s an overdraft of land deal in fact. Based on the analysis of China-s current municipal pattern, the passage proposed an assumption of a new pattern verified legitimacy by conceptual as well as econometric models. Conclusion is: the added supernumerary value of investment in public goods was not included in China-s current municipal pattern, but hidden in the rising housing prices; we should set housing tax or municipal tax to optimize the municipal pattern, to correct the behavior of local governments and to ensure the regular development of China-s urbanization.

Numerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method

In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid mechanics of laminar viscous flows. Quasi-linearization is iterative process but our proposed technique gives excellent numerical results with quasilinearization for solving nonlinear differential equations without any iteration on selecting collocation points by Haar wavelets. We have solved Blasius equation for 1≤α ≤ 2 and the numerical results are compared with the available results in literature. Finally, we conclude that proposed method is a promising tool for solving the well known nonlinear Blasius equation.

Identification of a PWA Model of a Batch Reactor for Model Predictive Control

The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.

Hub Port Positioning and Route Planning of Feeder Lines for Regional Transportation Network

In this paper, we seek to determine one reasonable local hub port and optimal routes for a containership fleet, performing pick-ups and deliveries, between the hub and spoke ports in a same region. The relationship between a hub port, and traffic in feeder lines is analyzed. A new network planning method is proposed, an integrated hub port location and route design, a capacitated vehicle routing problem with pick-ups, deliveries and time deadlines are formulated and solved using an improved genetic algorithm for positioning the hub port and establishing routes for a containership fleet. Results on the performance of the algorithm and the feasibility of the approach show that a relatively small fleet of containerships could provide efficient services within deadlines.

Multidimensional and Data Mining Analysis for Property Investment Risk Analysis

Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.

Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

This paper has been investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

An Energy Efficient Protocol for Target Localization in Wireless Sensor Networks

Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this paper, an energy efficient protocol for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed protocol saves a significant amount of energy and also prolongs the network lifetime.

Sway Reduction on Gantry Crane System using Delayed Feedback Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment

This paper presents the use of anti-sway angle control approaches for a two-dimensional gantry crane with disturbances effect in the dynamic system. Delayed feedback signal (DFS) and proportional-derivative (PD)-type fuzzy logic controller are the techniques used in this investigation to actively control the sway angle of the rope of gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of both controllers are examined in terms of sway angle suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.

An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles

A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.

Ontology-based Concept Weighting for Text Documents

Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.

Exterior Calculus: Economic Profit Dynamics

A mathematical model for the Dynamics of Economic Profit is constructed by proposing a characteristic differential oneform for this dynamics (analogous to the action in Hamiltonian dynamics). After processing this form with exterior calculus, a pair of characteristic differential equations is generated and solved for the rate of change of profit P as a function of revenue R (t) and cost C (t). By contracting the characteristic differential one-form with a vortex vector, the Lagrangian is obtained for the Dynamics of Economic Profit.

Color and Layout-based Identification of Documents Captured from Handheld Devices

This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.