Clustering of Variables Based On a Probabilistic Approach Defined on the Hypersphere

We consider n individuals described by p standardized variables, represented by points of the surface of the unit hypersphere Sn-1. For a previous choice of n individuals we suppose that the set of observables variables comes from a mixture of bipolar Watson distribution defined on the hypersphere. EM and Dynamic Clusters algorithms are used for identification of such mixture. We obtain estimates of parameters for each Watson component and then a partition of the set of variables into homogeneous groups of variables. Additionally we will present a factor analysis model where unobservable factors are just the maximum likelihood estimators of Watson directional parameters, exactly the first principal component of data matrix associated to each group previously identified. Such alternative model it will yield us to directly interpretable solutions (simple structure), avoiding factors rotations.

Anthropometric Correlates of Balance Performance in Non-Institutionalized Elderly

Purpose: The fear of falling is a major concern among the elderly. Sixty-five percent of individuals older than 60 years of age experience loss of balance often on a daily basis. Therefore, balance assessment in the elderly deserves special attention due to its importance in functional mobility and safety. This study aimed at assessing balance performance and comparing some anthropometric parameters among a Nigerian non-institutionalized elderly population. Methods: Sixty one elderly subjects (31 males and 30 females) participated in this study. Their ages ranged between 62 and 84 years. Ability to maintain balance was assessed using Functional Reach Test (FRT) and Sharpened Romberg Test (SRT). Anthropometric data including age, weight, height, arm length, leg length, bi-acromial breadth, foot length and trunk length were also collected. Analysis was done using Pearson’s Product Moment Correlation Coefficient and Independent T-test, while level of significance was set as p

Didactic Material Resources in the Teaching of National History and Geography: Selected Results of a Qualitative Survey

The paper is the first output of a larger research project conducted at the Faculty of Education of the University of Hradec Králové, which deals with an improved understanding of teachers' work in the subject of National History and Geography. Partial findings focusing on the use of didactic material resources in teaching are presented in this phase. With the regard to promotion of independent activity of students within learner based education, material equipment of schools with didactic aids is becoming increasingly important. This paper is based on qualitative research, where the possibilities and mainly the reasons for use of material didactic resources in teaching were investigated through semi-structured interviews. Attention was focused on ways of working with different teaching aids and their implementation in the educational process. It turns out that teachers accept current constructivist and humanistic approaches to education associated with the requirement to prepare students for life in an information society, and accordingly they adjust their teaching.

Impact of Liquidity Crunch on Interbank Network

Most empirical studies have analyzed how liquidity risks faced by individual institutions turn into systemic risk. Recent banking crisis has highlighted the importance of grasping and controlling the systemic risk, and the acceptance by Central Banks to ease their monetary policies for saving default or illiquid banks. This last point shows that banks would pay less attention to liquidity risk which, in turn, can become a new important channel of loss. The financial regulation focuses on the most important and “systemic” banks in the global network. However, to quantify the expected loss associated with liquidity risk, it is worth to analyze sensitivity to this channel for the various elements of the global bank network. A small bank is not considered as potentially systemic; however the interaction of small banks all together can become a systemic element. This paper analyzes the impact of medium and small banks interaction on a set of banks which is considered as the core of the network. The proposed method uses the structure of agent-based model in a two-class environment. In first class, the data from actual balance sheets of 22 large and systemic banks (such as BNP Paribas or Barclays) are collected. In second one, to model a network as closely as possible to actual interbank market, 578 fictitious banks smaller than the ones belonging to first class have been split into two groups of small and medium ones. All banks are active on the European interbank network and have deposit and market activity. A simulation of 12 three month periods representing a midterm time interval three years is projected. In each period, there is a set of behavioral descriptions: repayment of matured loans, liquidation of deposits, income from securities, collection of new deposits, new demands of credit, and securities sale. The last two actions are part of refunding process developed in this paper. To strengthen reliability of proposed model, random parameters dynamics are managed with stochastic equations as rates the variations of which are generated by Vasicek model. The Central Bank is considered as the lender of last resort which allows banks to borrow at REPO rate and some ejection conditions of banks from the system are introduced. Liquidity crunch due to exogenous crisis is simulated in the first class and the loss impact on other bank classes is analyzed though aggregate values representing the aggregate of loans and/or the aggregate of borrowing between classes. It is mainly shown that the three groups of European interbank network do not have the same response, and that intermediate banks are the most sensitive to liquidity risk.

A Distance Function for Data with Missing Values and Its Application

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Kano’s Model for Clinical Laboratory

The clinical laboratory has received considerable recognition globally due to the rapid development of advanced technology, economic demands and its role in a patient’s treatment cycle. Although various cross-domain experiments and practices with respect to clinical laboratory projects are ready for the full swing, the customer needs are still ambiguous and debatable. The purpose of this study is to apply Kano’s model and customer satisfaction matrix to categorize service quality attributes in order to see how well these attributes are able to satisfy customer needs. The result reveals that ten of the 26 service quality attributes have greater impacts on highly increasing customer’s satisfaction and should be taken in consideration firstly.

Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Critical Analysis of the Hong Kong International Convention on Ship Recycling

In May 2009, the International Maritime Organization (IMO) adopted the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships to address the growing concerns about the environmental, occupational health and safety risks related to ship recycling. The aim of the Hong Kong Convention is to provide a legally binding instrument which ensures that the process of ship recycling does not pose risks to human health, safety and to the environment. In this paper, critical analysis of the Hong Kong Convention has been carried out in order to study the effectiveness of the Convention to meet its objectives. The Convention has been studied in detail including its background, main features, major stakeholders, strengths and weaknesses. The Convention, though having several deficiencies, is a major breakthrough in not only recognizing but also dealing with the ill-practices associated with ship recycling.

Probabilistic Bhattacharya Based Active Contour Model in Structure Tensor Space

Object identification and segmentation application requires extraction of object in foreground from the background. In this paper the Bhattacharya distance based probabilistic approach is utilized with an active contour model (ACM) to segment an object from the background. In the proposed approach, the Bhattacharya histogram is calculated on non-linear structure tensor space. Based on the histogram, new formulation of active contour model is proposed to segment images. The results are tested on both color and gray images from the Berkeley image database. The experimental results show that the proposed model is applicable to both color and gray images as well as both texture images and natural images. Again in comparing to the Bhattacharya based ACM in ICA space, the proposed model is able to segment multiple object too.

Implementation of Heuristics for Solving Travelling Salesman Problem Using Nearest Neighbour and Minimum Spanning Tree Algorithms

The travelling salesman problem (TSP) is a combinatorial optimization problem in which the goal is to find the shortest path between different cities that the salesman takes. In other words, the problem deals with finding a route covering all cities so that total distance and execution time is minimized. This paper adopts the nearest neighbor and minimum spanning tree algorithm to solve the well-known travelling salesman problem. The algorithms were implemented using java programming language. The approach is tested on three graphs that making a TSP tour instance of 5-city, 10 –city, and 229–city. The computation results validate the performance of the proposed algorithm.

Beneficiation of Pyrolitic Carbon Black

This research investigated treatment of crude carbon black produced from pyrolysis of waste tyres in order to evaluate its quality and possible industrial applications. A representative sample of crude carbon black was dry screened to determine the initial particle size distribution. This was followed by pulverizing the crude carbon black and leaching in hot concentrated sulphuric acid for the removal of heavy metals and other contaminants. Analysis of the refined carbon black showed a significant improvement of the product quality compared to crude carbon black. It was discovered that refined carbon black can be further classified into multiple high value products for various industrial applications such as filler, paint pigment, activated carbon and fuel briquettes.

Intermolecular Dynamics between Alcohols and Fatty Acid Ester Solvents

This work focused on the interactions which occur between ester solvents and alcohol solutes. The alcohols selected ranged from the simplest alcohol (methanol) to C10-alcohols, and solubility predictions in the form of infinite dilution activity coefficients were made using the Modified UNIFAC Dortmund group contribution model. The model computation was set up on a Microsoft Excel spreadsheet specifically designed for this purpose. It was found that alcohol/ ester interactions yielded an increase in activity coefficients (i.e. became less soluble) with an increase in the size of the ester solvent molecule. Furthermore, activity coefficients decreased with an increase in the size of the alcohol solute. The activity coefficients also decreased with an increase in the degree of unsaturation of the ester hydrocarbon tail. Tertiary alcohols yielded lower activity coefficients than primary alcohols. Finally, cyclic alcohols yielded higher activity coefficients than straight-chain alcohols until a point is reached where the trend is reversed, referred to as the ‘crossover’ point.

An Effective Genetic Algorithm for a Complex Real-World Scheduling Problem

We address a complex scheduling problem arising in the wood panel industry with the objective of minimizing a quadratic function of job tardiness. The proposed solution strategy, which is based on an effective genetic algorithm, has been coded and implemented within a major Tunisian company, leader in the wood panel manufacturing. Preliminary experimental results indicate significant decrease of delivery times.

Investigating the Influence of Porosity on Thermal and Mechanical Properties of a C/C Composite Using Image Based FE Modelling

In this paper, 3D image based composite unit cell is constructed from high resolution tomographic images. Through-thickness thermal diffusivity and in-plane Young’s modulus are predicted for the composite unit cell. The accuracy of the image based composite unit cell is tested by comparing its results with the experimental results obtained from laser flash and tensile test. The FE predictions are in close agreement with experimental results. Through-thickness thermal diffusivity and in-plane Young’s modulus of a virgin C/C composite are predicted by replacing the properties of air (porosity) with the properties of carbon matrix. The effect of porosity was found to be more profound on thermal diffusivity than young’s modulus.

Composition Dependent Formation of Sputtered Co-Cu Film on Cr Under-Layer

Sputtered CoxCu100-x films with the different compositions of x = 57.7, 45.8, 25.5, 13.8, 8.8, 7.5 and 1.8 were deposited on Cr under-layer by RF-sputtering. SEM result reveals that the averaged thickness of Co-Cu film and Cr under-layer are 92 nm and 22nm, respectively. All Co-Cu films are composed of Co (FCC) and Cu (FCC) phases in (111) directions on BCC-Cr (110) under-layers. Magnetic properties, surface roughness and morphology of Co-Cu films are dependent on the film composition. The maximum and minimum surface roughness of 3.24 and 1.16nm are observed on the Co7.5Cu92.5 and Co45.8Cu54.2films, respectively. It can be described that the variance of surface roughness of the film because of the difference of the agglomeration rate of Co and Cu atoms on Cr under-layer. The Co57.5Cu42.3, Co45.8Cu54.2 and Co25.5Cu74.5 films shows the ferromagnetic phase whereas the rest of the film exhibits the paramagnetic phase at room temperature. The saturation magnetization, remnant magnetization and coercive field of Co-Cu films on Cr under-layer are slightly increased with increasing the Co composition. It can be concluded that the required magnetic properties and surface roughness of the Co-Cu film can be adapted by the adjustment of the film composition.

A Study of Priority Evaluation and Resource Allocation for Revitalization of Cultural Heritages in the Urban Development

Proper maintenance and preservation of significant cultural heritages or historic buildings is necessary. It can not only enhance environmental benefits and a sense of community, but also preserve a city's history and people’s memory. It allows the next generation to be able to get a glimpse of our past, and achieve the goal of sustainable preserved cultural assets. However, the management of maintenance work has not been appropriate for many designated heritages or historic buildings so far. The planning and implementation of the reuse has yet to have a breakthrough specification. It leads the heritages to a mere formality of being “reserved”, instead of the real meaning of “conservation”. For the restoration and preservation of cultural heritages study issues, it is very important due to the consideration of historical significance, symbolism, and economic benefits effects. However, the decision makers such as the officials from public sector they often encounter which heritage should be prioritized to be restored first under the available limited budgets. Only very few techniques are available today to determine the appropriately restoration priorities for the diverse historical heritages, perhaps because of a lack of systematized decision-making aids been proposed before. In the past, the discussions of management and maintenance towards cultural assets were limited to the selection of reuse alternatives instead of the allocation of resources. In view of this, this research will adopt some integrated research methods to solve the existing problems that decision-makers might encounter when allocating resources in the management and maintenance of heritages and historic buildings. The purpose of this study is to develop a sustainable decision making model for local governments to resolve these problems. We propose an alternative decision support model to prioritize restoration needs within the limited budgets. The model is constructed based on fuzzy Delphi, fuzzy analysis network process (FANP) and goal programming (GP) methods. In order to avoid misallocate resources; this research proposes a precise procedure that can take multi-stakeholders views, limited costs and resources into consideration. Also, the combination of many factors and goals has been taken into account to find the highest priority and feasible solution results. To illustrate the approach we propose in this research, seven cultural heritages in Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

On the Computation of a Common n-finger Robotic Grasp for a Set of Objects

Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.

Positive Solutions of Initial Value Problem for the Systems of Second Order Integro-Differential Equations in Banach Space

In this paper, by establishing a new comparison result, we investigate the existence of positive solutions for initial value problems of nonlinear systems of second order integro-differential equations in Banach space.We improve and generalize some results  (see[5,6]), and the results is new even in finite dimensional spaces.

Almost Periodicity in a Harvesting Lotka-Volterra Recurrent Neural Networks with Time-Varying Delays

By using the theory of exponential dichotomy and Banach fixed point theorem, this paper is concerned with the problem of the existence and uniqueness of positive almost periodic solution in a delayed Lotka-Volterra recurrent neural networks with harvesting terms. To a certain extent, our work in this paper corrects some result in recent years. Finally, an example is given to illustrate the feasibility and effectiveness of the main result.

Effect of Processing Methods on Texture Evolution in AZ31 Mg Alloy Sheet

Textures of AZ31 Mg alloy sheets were evaluated by using neutron diffraction method in this study. The AZ31 sheets were fabricated either by conventional casting and subsequent hot rolling or strip casting. The effect of warm rolling was investigated using the AZ31 Mg alloy sheet produced by conventional casting. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as 200oC under the roll speed of 30 m/min. The initial microstructure of conventionally cast specimen was found to be partially recrystallized structures. Grain refinement was found to occur actively during the warm rolling. The (0002),(10-10) (10-11),and (10-12) complete pole figures were measured using the HANARO FCD (Neutron Four Circle Diffractometer) and ODF were calculated. The major texture of all specimens can be expressed by ND//(0001) fiber texture. Texture of hot rolled specimen showed the strongest fiber component, while that of strip cast sheet seemed to be similar to random distribution.