Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Biotransformation of Artemisinin by using a Novel Soil Isolated Microorganism

Artemisinin is a potential antimalarial drug effective against the multidrug resistant forms of Malarial Parasites. The current production of artemisinin is insufficient to meet the global demand. In the present study microbial biotransformation of arteannuin B, a biogenetic precursor of artemisinin to the later has been investigated. Screening studies carried out on several soil borne microorganisms have yielded one novel species with the bioconversion ability. Crude cell free extract of 72h old culture of the isolate had shown the bioconversion activity. On incubation with the substrate arteannuin B, crude cell free extract of the isolate had shown a bioconversion of 18.54% to artemisinin on molar basis with a specific activity of 0.18 units/mg.

The Coverage of the Object-Oriented Framework Application Class-Based Test Cases

An application framework provides a reusable design and implementation for a family of software systems. Frameworks are introduced to reduce the cost of a product line (i.e., family of products that share the common features). Software testing is a time consuming and costly ongoing activity during the application software development process. Generating reusable test cases for the framework applications at the framework development stage, and providing and using the test cases to test part of the framework application whenever the framework is used reduces the application development time and cost considerably. Framework Interface Classes (FICs) are classes introduced by the framework hooks to be implemented at the application development stage. They can have reusable test cases generated at the framework development stage and provided with the framework to test the implementations of the FICs at the application development stage. In this paper, we conduct a case study using thirteen applications developed using three frameworks; one domain oriented and two application oriented. The results show that, in general, the percentage of the number of FICs in the applications developed using domain frameworks is, on average, greater than the percentage of the number of FICs in the applications developed using application frameworks. Consequently, the reduction of the application unit testing time using the reusable test cases generated for domain frameworks is, in general, greater than the reduction of the application unit testing time using the reusable test cases generated for application frameworks.

Near-Lossless Image Coding based on Orthogonal Polynomials

In this paper, a near lossless image coding scheme based on Orthogonal Polynomials Transform (OPT) has been presented. The polynomial operators and polynomials basis operators are obtained from set of orthogonal polynomials functions for the proposed transform coding. The image is partitioned into a number of distinct square blocks and the proposed transform coding is applied to each of these individually. After applying the proposed transform coding, the transformed coefficients are rearranged into a sub-band structure. The Embedded Zerotree (EZ) coding algorithm is then employed to quantize the coefficients. The proposed transform is implemented for various block sizes and the performance is compared with existing Discrete Cosine Transform (DCT) transform coding scheme.

Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

An Automatic Gridding and Contour Based Segmentation Approach Applied to DNA Microarray Image Analysis

DNA microarray technology is widely used by geneticists to diagnose or treat diseases through gene expression. This technology is based on the hybridization of a tissue-s DNA sequence into a substrate and the further analysis of the image formed by the thousands of genes in the DNA as green, red or yellow spots. The process of DNA microarray image analysis involves finding the location of the spots and the quantification of the expression level of these. In this paper, a tool to perform DNA microarray image analysis is presented, including a spot addressing method based on the image projections, the spot segmentation through contour based segmentation and the extraction of relevant information due to gene expression.

Novel Design and Analysis of a Brake Rotor

Over the course of the past century, the global automotive industry-s stance towards safety has evolved from one of contempt to one nearing reverence. A suspension system that provides safe handling and cornering capabilities can, with the help of an efficient braking system, improve safety to a large extent. The aim of this research is to propose a new automotive brake rotor design and to compare it with automotive vented disk rotor. Static structural and transient thermal analysis have been carried out on the vented disk rotor and proposed rotor designs to evaluate and compare their performance. Finite element analysis was employed for both static structural and transient thermal analysis. Structural analysis was carried out to study the stress and deformation pattern of the rotors under extreme loads. Time varying temperature load was applied on the rotors and the temperature distribution was analysed considering cooling parameters (convection and radiation). This dissertation illustrates the use of Finite Element Methods to examine models, concluding with a comparative study of the proposed rotor design and the conventional vented disk rotor for structural stability and thermal efficiency.

A Novel Approach for Beneficiation and Dewatering of Coal Fines for Indian Coal Preparation Plant

An attempt has been made to beneficiate the Indian coking coal fines by a combination of Spiral, flotation and Oleo Flotation processes. Beneficiation studies were also carried out on - 0.5mm coal fines using flotation and oleo flotation by splitting at size 0.063mm.Size fraction of 0.5mm-0.063mm and -0.063mm size were treated in flotation and Oleo flotation respectively. The washability studies on the fraction 3-0.5 mm indicated that good separation may be achieved when it is fed in a spiral. Combined product of Spiral, Flotation and Oleo Flotation has given a significant yield at acceptable ash%. Studies were also conducted to see the dewatering of combined product by batch type centrifuge. It may further be suggested that combination of different processes may be used to treat the -3 mm fraction in an integrated manner to achieve the yield at the desired ash level. The treatment of the 3/1 mm -0.5 mm size fraction by spiral,-0.5-0.63 mm by conventional froth flotation and - 0.063 fractions by oleo flotation may provide a complete solution of beneficiation and dewatering of coal fines, and can effectively address the environmental problems caused by coal fines.

Implementing High Performance VPN Router using Cavium-s CN2560 Security Processor

IPsec protocol[1] is a set of security extensions developed by the IETF and it provides privacy and authentication services at the IP layer by using modern cryptography. In this paper, we describe both of H/W and S/W architectures of our router system, SRS-10. The system is designed to support high performance routing and IPsec VPN. Especially, we used Cavium-s CN2560 processor to implement IPsec processing in inline-mode.

The Study on the Conversed Remediation between Old and New Media in Case of Smart Phone and PC in South Korea

After Apple's first introduction its smart phone, iPhone in the end of 2009 in Korea, the number of Korean smarphone users had been rapidly increasing so that the half of Korean population became smart phone users as of February, 2012. Currently, smart phones are positioned as a major digital media with powerful influences in Korea. And, now, Koreans are leaning new information, enjoying games and communicating other people every time and everywhere. As smart phone devices' performances increased, the number of usable services became more while adequate GUI developments are required to implement various functions with smart phones. The strategy to provide similar experiences on smart phones through familiar features based on employment of existing media's functions mostly contributed to smart phones' popularization in connection with smart phone devices' iconic GUIs. The spread of Smart phone increased mobile web accesses. Therefore, the attempts to implement PC's web in the smart phone's web are continuously made. The mobile web GUI provides familiar experiences to users through designs adequately utilizing the smart phone's GUIs. As the number of users familiarized to smart phones and mobile web GUIs, opposite to reversed remediation from many parts of PCs, PCs are starting to adapt smart phone GUIs. This study defines this phenomenon as the reversed remediation, and reviews the reversed remediation cases of Smart phone GUI' characteristics of PCs. For this purpose, the established study issues are as under: · what is the reversed remediation? · what are the smart phone GUI's characteristics? · what kind of interrelationship exist s between the smart phone and PC's web site? It is meaningful in the forecast of the future GUI's change by understanding of characteristics in the paradigm changes of PC and smart phone's GUI designs. This also will be helpful to establish strategies for digital devices' development and design.

Electromagnetic Field Modeling in Human Tissue

For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.

Implicit Authorization Mechanism of Object-Oriented Database

Due to its special data structure and manipulative principle, Object-Oriented Database (OODB) has a particular security protection and authorization methods. This paper first introduces the features of security mechanism about OODB, and then talked about authorization checking process of OODB. Implicit authorization mechanism is based on the subject hierarchies, object hierarchies and access hierarchies of the security authorization modes, and simplifies the authorization mode. In addition, to combine with other authorization mechanisms, implicit authorization can make protection on the authorization of OODB expediently and effectively.

Feed-Forward Control in Resonant DC Link Inverter

This paper proposes a feed-forward control in resonant dc link inverter. The feed-forward control configuration is based on synchronous sigma-delta modulation. The simulation results showing the proposed technique can reject non-ideal dc bus improving the total harmonic distortion.

Optimal Combination for Modal Pushover Analysis by Using Genetic Algorithm

In order to consider the effects of the higher modes in the pushover analysis, during the recent years several multi-modal pushover procedures have been presented. In these methods the response of the considered modes are combined by the square-rootof- sum-of-squares (SRSS) rule while application of the elastic modal combination rules in the inelastic phases is no longer valid. In this research the feasibility of defining an efficient alternative combination method is investigated. Two steel moment-frame buildings denoted SAC-9 and SAC-20 under ten earthquake records are considered. The nonlinear responses of the structures are estimated by the directed algebraic combination of the weighted responses of the separate modes. The weight of the each mode is defined so that the resulted response of the combination has a minimum error to the nonlinear time history analysis. The genetic algorithm (GA) is used to minimize the error and optimize the weight factors. The obtained optimal factors for each mode in different cases are compared together to find unique appropriate weight factors for each mode in all cases.

Application of Neural Networks in Power Systems; A Review

The electric power industry is currently undergoing an unprecedented reform. One of the most exciting and potentially profitable recent developments is increasing usage of artificial intelligence techniques. The intention of this paper is to give an overview of using neural network (NN) techniques in power systems. According to the growth rate of NNs application in some power system subjects, this paper introduce a brief overview in fault diagnosis, security assessment, load forecasting, economic dispatch and harmonic analyzing. Advantages and disadvantages of using NNs in above mentioned subjects and the main challenges in these fields have been explained, too.

Smartphones for In-home Diagnostics in Telemedicine

Many contemporary telemedical applications rely on regular consultations over the phone or video conferencing which consumes valuable resources such as the time of the doctors. Some applications or treatments allow automated diagnostics on the patient side which only notifies the doctors in case a significant worsening of patient’s condition is measured. Such programs can save valuable resources but an important implementation issue is how to ensure effective and cheap diagnostics on the patient side. First, specific diagnostic devices on patient side are expensive and second, they need to be user-˜friendly to encourage patient’s cooperation and reduce errors in usage which may cause noise in diagnostic data. This article proposes the use of modern smartphones and various build-in or attachable sensors as universal diagnostic devices applicable in a wider range of telemedical programs and demonstrates their application on a case-study – a program for schizophrenic relapse prevention.

Modeling of a Novel Dual-Belt Continuously Variable Transmission for Automobiles

It is believed that continuously variable transmission (CVT) will dominate the automotive transmissions in the future. The most popular design is Van Doorne-s CVT with single metal pushing V-belt. However, it is only applicable to low power passenger cars because its major limitation is low torque capacity. Therefore, this research studies a novel dual-belt CVT system to overcome the limitation of traditional single-belt CVT, such that it can be applicable to the heavy-duty vehicles. This paper presents the mathematical model of the design and its experimental verification. Experimental and simulated results show that the model developed is valid and the proposed dual-belt CVT can really overcome the traditional limitation of single-belt Van Doorne-s CVT.

Signed Approach for Mining Web Content Outliers

The emergence of the Internet has brewed the revolution of information storage and retrieval. As most of the data in the web is unstructured, and contains a mix of text, video, audio etc, there is a need to mine information to cater to the specific needs of the users without loss of important hidden information. Thus developing user friendly and automated tools for providing relevant information quickly becomes a major challenge in web mining research. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent ones that are likely to contain outlying data such as noise, irrelevant and redundant data. This paper mainly focuses on Signed approach and full word matching on the organized domain dictionary for mining web content outliers. This Signed approach gives the relevant web documents as well as outlying web documents. As the dictionary is organized based on the number of characters in a word, searching and retrieval of documents takes less time and less space.

Nanopaper Innovation in Paper and Packaging Industry

Nowadays due to globalization of economy and competition environment, innovation and technology plays key role at creation of wealth and economic growth of countries. In fact prompt growth of practical and technologic knowledge may results in social benefits for countries when changes into effective innovation. Considering the importance of innovation for the development of countries, this study addresses the radical technological innovation introduced by nanopapers at different stages of producing paper including stock preparation, using authorized additives, fillers and pigments, using retention, calender, stages of producing conductive paper, porous nanopaper and Layer by layer self-assembly. Research results show that in coming years the jungle related products will lose considerable portion of their market share, unless embracing radical innovation. Although incremental innovations can make this industry still competitive in mid-term, but to have economic growth and competitive advantage in long term, radical innovations are necessary. Radical innovations can lead to new products and materials which their applications in packaging industry can produce value added. However application of nanotechnology in this industry can be costly, it can be done in cooperation with other industries to make the maximum use of nanotechnology possible. Therefore this technology can be used in all the production process resulting in the mass production of simple and flexible papers with low cost and special properties such as facility at shape, form, easy transportation, light weight, recovery and recycle marketing abilities, and sealing. Improving the resistance of the packaging materials without reducing the performance of packaging materials enhances the quality and the value added of packaging. Improving the cellulose at nano scale can have considerable electron optical and magnetic effects leading to improvement in packaging and value added. Comparing to the specifications of thermoplastic products and ordinary papers, nanopapers show much better performance in terms of effective mechanical indexes such as the modulus of elasticity, tensile strength, and strain-stress. In densities lower than 640 kgm -3, due to the network structure of nanofibers and the balanced and randomized distribution of NFC in flat space, these specifications will even improve more. For nanopapers, strains are 1,4Gpa, 84Mpa and 17%, 13,3 Gpa, 214Mpa and 10% respectively. In layer by layer self assembly method (LbL) the tensile strength of nanopaper with Tio3 particles and Sio2 and halloysite clay nanotube are 30,4 ±7.6Nm/g and 13,6 ±0.8Nm/g and 14±0.3,3Nm/g respectively that fall within acceptable range of similar samples with virgin fiber. The usage of improved brightness and porosity index in nanopapers can create more competitive advantages at packaging industry.

A Study on the Characteristics of the Korean Color Based On the Comparative Analysis of the Korea, China and Japan-s Porcelains

Ceramics comprise the largest proportion of Korea-s cultural heritage currently preserved (Cited from “The Beauty of Old Ceramics of Korea" written by Yoon Yong-iee). Thus, this researcher conducted this investigation in an attempt to gain insight into Korea-s past culture and the lost period of the colonial period and the Korean War by looking into the ceramics. Korea, China and Japan are part of the similar cultural bloc within the East Asian region. Their porcelains manifest distinctive characteristics by each nation along with similarities. Thus, this research seeks to find the distinctive characteristics of the Korean porcelain by conducting comparative analysis of the similarities and distinctive characteristics. These distinctive characteristics are manifested effectively in the colors of the porcelains following the materials that can be obtained in Korea, China and Japan and production method. Likewise, this research seeks to identify the characteristics of the Korean porcelains- colors based on the comparative analysis of the porcelain colors. The reasons that porcelains were selected were because they are the most well preserved cultural remains in Korea and since they have both similarities and distinctive characteristics due to the cultural interchanges among Korea, China and Japan, which facilitates comparative study. The research targets include Korea, China and Japan-s porcelains. By comparing the colors of the porcelains from Korea, China and Japan that have their distinctive characteristics, this research seeks to identify Korea-specific porcelain colors. These colors derive from the materials that can be obtained only in Korea, and they are affected by the ideologies that governed at the time. This research is meaningful in the sense that this identifies the colors that embraces the Korean culture and provides important data by leveraging the study of the characteristics of the Korea-specific porcelains.