Educational Knowledge Transfer in Indigenous Mexican Areas Using Cloud Computing

This work proposes a Cooperation-Competitive (Coopetitive) approach that allows coordinated work among the Secretary of Public Education (SEP), the Autonomous University of Querétaro (UAQ) and government funds from National Council for Science and Technology (CONACYT) or some other international organizations. To work on an overall knowledge transfer strategy with e-learning over the Cloud, where experts in junior high and high school education, working in multidisciplinary teams, perform analysis, evaluation, design, production, validation and knowledge transfer at large scale using a Cloud Computing platform. Allowing teachers and students to have all the information required to ensure a homologated nationally knowledge of topics such as mathematics, statistics, chemistry, history, ethics, civism, etc. This work will start with a pilot test in Spanish and initially in two regional dialects Otomí and Náhuatl. Otomí has more than 285,000 speaking indigenes in Queretaro and Mexico´s central region. Náhuatl is number one indigenous dialect spoken in Mexico with more than 1,550,000 indigenes. The phase one of the project takes into account negotiations with indigenous tribes from different regions, and the Information and Communication technologies to deliver the knowledge to the indigenous schools in their native dialect. The methodology includes the following main milestones: Identification of the indigenous areas where Otomí and Náhuatl are the spoken dialects, research with the SEP the location of actual indigenous schools, analysis and inventory or current schools conditions, negotiation with tribe chiefs, analysis of the technological communication requirements to reach the indigenous communities, identification and inventory of local teachers technology knowledge, selection of a pilot topic, analysis of actual student competence with traditional education system, identification of local translators, design of the e-learning platform, design of the multimedia resources and storage strategy for “Cloud Computing”, translation of the topic to both dialects, Indigenous teachers training, pilot test, course release, project follow up, analysis of student requirements for the new technological platform, definition of a new and improved proposal with greater reach in topics and regions. Importance of phase one of the project is multiple, it includes the proposal of a working technological scheme, focusing in the cultural impact in Mexico so that indigenous tribes can improve their knowledge about new forms of crop improvement, home storage technologies, proven home remedies for common diseases, ways of preparing foods containing major nutrients, disclose strengths and weaknesses of each region, communicating through cloud computing platforms offering regional products and opening communication spaces for inter-indigenous cultural exchange.

Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Terrain Classification for Ground Robots Based on Acoustic Features

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Innovation Strategies and Challenges in Emerging Economies: The Case of Research and Technology Organizations in Turkey

Innovation is highly critical for every company, especially for technology-based organizations looking to sustain their competitive advantage. However, this is not an easy task. Regardless of the size of the enterprise, market and location, all organizations face numerous challenges. Even though huge barriers to innovation exist in different countries, firm- and industry-specific challenges can be distinguished. This paper examines innovation strategies and obstacles to innovation in research and technology organizations (RTO) of Turkey. From the most important to the least, nine different challenges are ranked according the results of this survey. The findings reveal that to take the lead in innovation, financial constraint is the biggest challenge, which is consistent with the related literature. It ranked number one in this study. Beyond that, based on a sample of 40 RTOs, regional challenges such as underdeveloped regional innovation ecosystem plays a significant role in hampering innovation. Most of the organizations (55%) embrace an incremental approach to innovation, while only few pursue radical shifts. About 40% of the RTOs focus on product innovation, and 27.5% of them concentrate on technological innovation, while a very limited number aim for operational excellence and customer engagement as the focus of their strategic innovation efforts.

Effects of the In-Situ Upgrading Project in Afghanistan: A Case Study on the Formally and Informally Developed Areas in Kabul

Cities in Afghanistan have been rapidly urbanized; however, many parts of these cities have been developed with no detailed land use plan or infrastructure. In other words, they have been informally developed without any government leadership. The new government started the In-situ Upgrading Project in Kabul to upgrade roads, the water supply network system, and the surface water drainage system on the existing street layout in 2002, with the financial support of international agencies. This project is an appropriate emergency improvement for living life, but not an essential improvement of living conditions and infrastructure problems because the life expectancies of the improved facilities are as short as 10–15 years, and residents cannot obtain land tenure in the unplanned areas. The Land Readjustment System (LRS) conducted in Japan has good advantages that rearrange irregularly shaped land lots and develop the infrastructure effectively. This study investigates the effects of the In-situ Upgrading Project on private investment, land prices, and residents’ satisfaction with projects in Kart-e-Char, where properties are registered, and in Afshar-e-Silo Lot 1, where properties are unregistered. These projects are located 5 km and 7 km from the CBD area of Kabul, respectively. This study discusses whether LRS should be applied to the unplanned area based on the questionnaire and interview responses of experts experienced in the In-situ Upgrading Project who have knowledge of LRS. The analysis results reveal that, in Kart-e-Char, a lot of private investment has been made in the construction of medium-rise (five- to nine-story) buildings for commercial and residential purposes. Land values have also incrementally increased since the project, and residents are commonly satisfied with the road pavement, drainage systems, and water supplies, but dissatisfied with the poor delivery of electricity as well as the lack of public facilities (e.g., parks and sport facilities). In Afshar-e-Silo Lot 1, basic infrastructures like paved roads and surface water drainage systems have improved from the project. After the project, a few four- and five-story residential buildings were built with very low-level private investments, but significant increases in land prices were not evident. The residents are satisfied with the contribution ratio, drainage system, and small increase in land price, but there is still no drinking water supply system or tenure security; moreover, there are substandard paved roads and a lack of public facilities, such as parks, sport facilities, mosques, and schools. The results of the questionnaire and interviews with the four engineers highlight the problems that remain to be solved in the unplanned areas if LRS is applied—namely, land use differences, types and conditions of the infrastructure still to be installed by the project, and time spent for positive consensus building among the residents, given the project’s budget limitation.

A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria

Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; Dioscorea rotundata); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture.

Hydrological Characterization of a Watershed for Streamflow Prediction

In this paper, we extend the versatility and usefulness of GIS as a methodology for any river basin hydrologic characteristics analysis (HCA). The Gurara River basin located in North-Central Nigeria is presented in this study. It is an on-going research using spatial Digital Elevation Model (DEM) and Arc-Hydro tools to take inventory of the basin characteristics in order to predict water abstraction quantification on streamflow regime. One of the main concerns of hydrological modelling is the quantification of runoff from rainstorm events. In practice, the soil conservation service curve (SCS) method and the Conventional procedure called rational technique are still generally used these traditional hydrological lumped models convert statistical properties of rainfall in river basin to observed runoff and hydrograph. However, the models give little or no information about spatially dispersed information on rainfall and basin physical characteristics. Therefore, this paper synthesizes morphometric parameters in generating runoff. The expected results of the basin characteristics such as size, area, shape, slope of the watershed and stream distribution network analysis could be useful in estimating streamflow discharge. Water resources managers and irrigation farmers could utilize the tool for determining net return from available scarce water resources, where past data records are sparse for the aspect of land and climate.

Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Development of a Cost Effective Two Wheel Tractor Mounted Mobile Maize Sheller for Small Farmers in Bangladesh

Two-wheel tractor (power tiller) is a common tillage tool in Bangladesh agriculture for easy access in fragmented land with affordable price of small farmers. Traditional maize sheller needs to be carried from place to place by hooking with two-wheel tractor (2WT) and set up again for shelling operation which takes longer time for preparation of maize shelling. The mobile maize sheller eliminates the transportation problem and can start shelling operation instantly any place as it is attached together with 2WT. It is counterclockwise rotating cylinder, axial flow type sheller, and grain separated with a frictional force between spike tooth and concave. The maize sheller is attached with nuts and bolts in front of the engine base of 2WT. The operating power of the sheller comes from the fly wheel of the engine of the tractor through ‘V” belt pulley arrangement. The average shelling capacity of the mobile sheller is 2.0 t/hr, broken kernel 2.2%, and shelling efficiency 97%. The average maize shelling cost is Tk. 0.22/kg and traditional custom hire rate is Tk.1.0/kg, respectively (1 US$=Tk.78.0). The service provider of the 2WT can transport the mobile maize sheller long distance in operator’s seating position. The manufacturers started the fabrication of mobile maize sheller. This mobile maize sheller is also compatible for the other countries where 2WT is available for farming operation.

Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber

Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.

RoboWeedSupport-Semi-Automated Unmanned Aerial System for Cost Efficient High Resolution in Sub-Millimeter Scale Acquisition of Weed Images

Recent advances in the Unmanned Aerial System (UAS) safety and perception systems enable safe low altitude autonomous terrain following flights recently demonstrated by the consumer DJI Mavic PRO and Phamtom 4 Pro drones. This paper presents the first prototype system utilizing this functionality in form of semi-automated UAS based collection of crop/weed images where the embedded perception system ensures a significantly safer and faster gathering of weed images with sub-millimeter resolution. The system is to be used when the weeds are at cotyledon stage and prior to the harvest recognizing the grass weed species, which cannot be discriminated at the cotyledon stage.

The Didactic Transposition in Brazilian High School Physics Textbooks: A Comparative Study of Didactic Materials

In this article, we analyze the different approaches to the topic Magnetism of Matter in physics textbooks of Brazilian schools. For this, we compared the approach to the concepts of the magnetic characteristics of materials (diamagnetism, paramagnetism, ferromagnetism and antiferromagnetism) in different sources of information and in different levels of education, from Higher Education to High School. In this sense, we used as reference the theory of the Didactic Transposition of Yves Chevallard, a French educational theorist, who conceived in his theory three types of knowledge – Scholarly Knowledge, Knowledge to be taught and Taught Knowledge – related to teaching practice. As a research methodology, from the reading of the works used in teacher training and those destined to basic education students, we compared the treatment of a higher education physics book, a scientific article published in a Brazilian journal of the educational area, and four high school textbooks, in order to establish in which there is a greater or lesser degree of approximation with the knowledge produced by the scholars – scholarly knowledge – or even with the knowledge to be taught (to that found in books intended for teaching). Thus, we evaluated the level of proximity of the subjects conveyed in high school and higher education, as well as the relevance that some textbook authors give to the theme.

A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

From Vertigo to Verticality: An Example of Phenomenological Design in Architecture

Architects commonly attempt a depiction of organic forms when their works are inspired by nature, regardless of the building site. Nevertheless it is also possible to try matching structures with natural scenery, by applying a phenomenological approach in terms of spatial operations, regarding perceptions from nature through architectural aspects such as protection, views, and orientation. This method acknowledges a relationship between place and space, where intentions towards tangible facts then become design statements. Although spaces resulting from such a process may present an effective response to the environment, they can also offer further outcomes beyond the realm of form. The hypothesis is that, in addition to recognising a bond between architecture and nature, it is also plausible to associate such perceptions with the inner ambient of buildings, by analysing features such as daylight. The case study of a single-family house in a rainforest near Valdivia, Chilean Patagonia is presented, with the intention of addressing the above notions through a discussion of the actual effects of inhabiting a place by way of a series of insights, including a revision of diagrams and photographs that assist in understanding the implications of this design practice. In addition, figures based on post-occupancy behaviour and daylighting performance relate both architectural and environmental issues to a decision-making process motivated by the observation of nature.

Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation

In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.

Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

A Structural Constitutive Model for Viscoelastic Rheological Behavior of Human Saphenous Vein Using Experimental Assays

Cardiovascular diseases are one of the most common causes of mortality in developed countries. Coronary artery abnormalities and carotid artery stenosis, also known as silent death, are among these diseases. One of the treatment methods for these diseases is to create a deviatory pathway to conduct blood into the heart through a bypass surgery. The saphenous vein is usually used in this surgery to create the deviatory pathway. Unfortunately, a re-surgery will be necessary after some years due to ignoring the disagreement of mechanical properties of graft tissue and/or applied prostheses with those of host tissue. The objective of the present study is to clarify the viscoelastic behavior of human saphenous tissue. The stress relaxation tests in circumferential and longitudinal direction were done in this vein by exerting 20% and 50% strains. Considering the stress relaxation curves obtained from stress relaxation tests and the coefficients of the standard solid model, it was demonstrated that the saphenous vein has a non-linear viscoelastic behavior. Thereafter, the fitting with Fung’s quasilinear viscoelastic (QLV) model was performed based on stress relaxation time curves. Finally, the coefficients of Fung’s QLV model, which models the behavior of saphenous tissue very well, were presented.

The Effects of Eight Weeks of Interval Endurance Training on hs-CRP Levels and Anthropometric Parameters in Overweight Men

Inflammatory markers are known as the main predictors of cardiovascular diseases. This study aimed at determining the effect of 8 weeks of interval endurance training on hs-CRP level and some anthropometric parameters in overweight men. Following the call for participation in research project in Kashan, 73 volunteers participated in it and constituted the statistical population of the study. Then, 28 overweight young men from the age of 22 to 25 years old were randomly assigned into two groups of experimental and control group (n=14). Anthropometric and the blood sample was collected before and after the termination of the program for measuring hs-CRP. The interval endurance program was performed at 60 to 75% of maximum heart rate in 2 sessions per week for 8 weeks. Kolmogorov-Smirnov test was used to test whether two samples come from the same distribution and T-test was used to assess the difference of two groups which were statistically significant at the level of 0.05. The result indicated that there was a significant difference between the hs-RP, weight, BMI and W/H ratio of overweight men in posttest in the exercise group (P≤0.05) but not in the control group. Interval endurance training program causes decrease in hs-CRP level and anthropometric parameters.

The Effects of a Circuit Training Program on Muscle Strength, Agility, Anaerobic Performance and Cardiovascular Endurance

This study aimed to examine the effects of a circuit training program on muscle strength, agility, anaerobic performance and cardiovascular endurance. The study involved 24 freshmen (age 18.87+0.68 yr.) male students of the Faculty of Sport Science, Burapha University. They sample study were randomly divided into two groups: Circuit Training group (CT; n=12) and a Control group (C; n=12). Baseline data on height, weight, muscle strength (hand grip dynamometer and leg strength dynamometer), agility (agility T-Test), and anaerobic performance (Running-based Anaerobic Sprint Test) and cardiovascular endurance (20 m Endurance Shuttle Run Test) were collected. The circuit training program included one circuit of eight stations of 30/60 seconds of work/rest interval with two cycles in Week 1-4, and 60/90 seconds of work/rest interval with three cycles in Week 5-8, performed three times per week. Data were analyzed using paired t-tests and independent sample t-test. Statistically significance level was set at 0.05. The results show that after 8 weeks of a training program, muscle strength, agility, anaerobic capacity and cardiovascular endurance increased significantly in the CT Group (p < 0.05), while significant increase was not observed in the C Group (p < 0.05). The results of this study suggest that the circuit training program improved muscle strength, agility, anaerobic capacity and cardiovascular endurance of the study subjects. This program may be used as a guideline for selecting a set of exercise to improve physical fitness.