Remote Sensing, GIS, and AHP for Assessing Physical Vulnerability to Tsunami Hazard

Remote sensing image processing, spatial data analysis through GIS approach, and analytical hierarchy process were introduced in this study for assessing the vulnerability area and inundation area due to tsunami hazard in the area of Rikuzentakata, Iwate Prefecture, Japan. Appropriate input parameters were derived from GSI DEM data, ALOS AVNIR-2, and field data. We used the parameters of elevation, slope, shoreline distance, and vegetation density. Five classes of vulnerability were defined and weighted via pairwise comparison matrix. The assessment results described that 14.35km2 of the study area was under tsunami vulnerability zone. Inundation areas are those of high and slightly high vulnerability. The farthest area reached by a tsunami was about 7.50km from the shoreline and shows that rivers act as flooding strips that transport tsunami waves into the hinterland. This study can be used for determining a priority for land-use planning in the scope of tsunami hazard risk management.

Packing and Covering Radii of Linear Error-Block Codes

Linear error-block codes are a natural generalization of linear error correcting codes. The purpose of this paper is to generalize some results on the packing and the covering radii to the error-block case. We study their properties when a code undergoes some specific modifications and combinations with another code. We give a few bounds on the packing and the covering radii of these codes.

Study of Methylene Blue Dye Adsorption on to Activated Carbons from Olive Stones

Activated carbons were produced from olive stones by a chemical process. The activated carbon (AC) were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The activated carbons were characterized by nitrogen adsorption and enthalpy of immersion. Batch adsorption experiments were carried out to study the effect of initial different concentrations solution on dye adsorption properties. Isotherms were fitted to Langmuir model, and corresponding parameters were determined. The results showed that the increase of ration of ZnCl2 leads to increase in apparent surface areas and produces activated carbons with pore structure more developed. However, the maximum MB uptakes for all carbons were determined and correlated with activated carbons characteristics. 

On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach

A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.

Seismic Excitation of Steel Frame Retrofitted by a Multi-Panel PMC Infill Wall

A multi-panel PMC infilled system, using polymer matrix composite (PMC) material, was introduced as new conceptual design for seismic retrofitting. A proposed multi panel PMC infilled system was composed of two basic structural components: inner PMC sandwich infills and outer FRP damping panels. The PMC material had high stiffness-to-weight and strength-to-weight ratios. Therefore, the addition of PMC infill panels into existing structures would not significantly alter the weight of the structure, while providing substantial structural enhancement. In this study, an equivalent linearized dynamic analysis for a proposed multi-panel PMC infilled frame was performed, in order to assess their effectiveness and their responses under the simulated earthquake loading. Upon comparing undamped (without PMC panel) and damped (with PMC panel) structures, numerical results showed that structural damping with passive interface damping layer could significantly enhance the seismic response.

Mathematical Modeling of Uncompetitive Inhibition of Bi-Substrate Enzymatic Reactions

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such a complex systems as a biological are. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides, it has been shown that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction. 

Maximum Likelihood Estimation of Burr Type V Distribution under Left Censored Samples

The paper deals with the maximum likelihood estimation of the parameters of the Burr type V distribution based on left censored samples. The maximum likelihood estimators (MLE) of the parameters have been derived and the Fisher information matrix for the parameters of the said distribution has been obtained explicitly. The confidence intervals for the parameters have also been discussed. A simulation study has been conducted to investigate the performance of the point and interval estimates.

Creative Teaching of New Product Development to Operations Managers

New Product Development (NPD) has got its roots on an Engineering background. Thus, one might wonder about the interest, opportunity, contents and delivery process, if students from soft sciences were involved. This paper addressed «What to teach?» and «How to do it?», as the preliminary research questions that originated the introduced propositions. The curriculum-developer model that was purposefully chosen to adapt the coursebook by pursuing macro/micro strategies was found significant by an exploratory qualitative case study. Moreover, learning was developed and value created by implementing the institutional curriculum through a creative, hands-on, experiencing, problem-solving, problem-based but organized teamwork approach. Product design of an orange squeezer complying with ill-defined requirements, including drafts, sketches, prototypes, CAD simulations and a business plan, plus a website, written reports and presentations were the deliverables that confirmed an innovative contribution towards research and practice of teaching and learning of engineering subjects to non-specialist operations managers candidates.

Experimental Study on Adsorption Capacity of Activated Carbon Pairs with Different Refrigerants

This study is experimentally targeting to develop effective in heat and mass transfer processes for the adsorbate to obtain applicable adsorption capacity data. This is done by using fin and tube heat exchanger core and the adsorbate is adhesive over its surface and located as the core of the adsorber. The pairs are activated carbon powder/R-134a, activated carbon powder/R-407c, activated carbon powder/R-507A, activated carbon granules/R-507A, activated carbon granules/R-407c and activated carbon granules/R-134a, at different adsorption temperatures of 25, 30, 35 and 50°C. The following is results is obtained: at adsorption temperature of 25 °C the maximum adsorption capacity is found to be 0.8352kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.1583kg/kg for activated carbon granules with R-407c. While, at adsorption temperature of 50°C the maximum adsorption capacity is found to be 0.3207kg/kg for activated carbon powder with R-134a and the minimum adsorption capacity found to be 0.0609kg/kg for activated carbon granules with R-407c. Therefore, the activated carbon powder/R-134a pair is highly recommended to be used as adsorption refrigeration working pair because of its higher maximum adsorption capacity than the other tested pairs, to produce a compact, efficient and reliable for long life performance adsorption refrigeration system.

The Loyalty of Banks’ Employees in the Context of the Acceptance of Clients’ Needs and Their Own Productivity. A Case Study from the Czech and Slovak Republic

The aim of this article was to analyze the relationship between the loyalty of banks´ employees and the acceptance of clients’ needs and to analyze the relationship between the loyalty of banks’ employees and the lack of their productivity in the Czech and Slovak banking sector. Our research has been realized through a questionnaire survey. The loyalty of banks’ employees was higher in the Czech Republic than in Slovak Republic which has been transformed into a higher acceptance rate of customers’ needs and lower lack of employees’ productivity. Within both countries, it has been found that the approach of loyal employees to the acceptance of clients’ needs is not statistically significantly different from the approach of other employees. It has been also discovered that loyal employees did not work more intensively and did not feel statistically significant lower lack of their own productivity.

Existence of Periodic Solution for p-Laplacian Neutral Rayleigh Equation with Sign-variable Coefficient of Non Linear Term

As p-Laplacian equations have been widely applied in field of the fluid mechanics and nonlinear elastic mechanics, it is necessary to investigate the periodic solutions of functional differential equations involving the scalar p-Laplacian. By using Mawhin’s continuation theorem, we study the existence of periodic solutions for p-Laplacian neutral Rayleigh equation (ϕp(x(t)−c(t)x(t − r))) + f(x(t)) + g1(x(t − τ1(t, |x|∞))) + β(t)g2(x(t − τ2(t, |x|∞))) = e(t), It is meaningful that the functions c(t) and β(t) are allowed to change signs in this paper, which are different from the corresponding ones of known literature.

Micro-Hydrokinetic for Remote Rural Electrification

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).

Stabilization of Steel Beams of Monosymmetric Thin-Walled Cross-Section by Trapezoidal Sheeting

Steel thin-walled beams have been widely used in civil engineering as purlins, ceiling beams or wall substructure beams. There are often planar members such as trapezoidal sheeting or sandwich panels used as roof or wall cladding fastened to the steel beams. The planar members also serve as stabilization of thin-walled beams against buckling due to loss of stability. This paper focuses on problem of stabilization of steel monosymmetric thin-walled beams by trapezoidal sheeting. Some factors having influence on overall behavior of this structural system are investigated using numerical analysis. Thin-walled beams in bending stabilized by trapezoidal sheeting are of primarily interest of this study.

Integrated Water Management for Lafarge Cement-Jordan

This study aims at implementing integrated water resources management principles to the Lafarge Cement Jordan at Al-Fuhais plant. This was accomplished by conducting water audits at all water consuming units in the plant. Based on the findings of the water audit, an action plan to improve water use efficiency in the plant was proposed. The main elements of which are installing water saving devices, re-use of the treated wastewater, water harvesting, raising the awareness of the employees, and linking the plant to the water demand management unit at the Ministry of Water and Irrigation. The analysis showed that by implementing the proposed action plan, it is expected that the industrial water demand can be satisfied from non-conventional resources including treated wastewater and harvested water. As a consequence, fresh water can be used to increase the supply to Al-Fuhais city which is expected to reflect positively on the relationship between the factory and the city. 

Feasibility of Risk Assessment for Type 2 Diabetes in Community Pharmacies Using Two Different Approaches: A Pilot Study in Thailand

Aims: To evaluate the application of non-invasive diabetes risk assessment tool in community pharmacy setting. Methods: Thai diabetes risk score was applied to assess individuals at risk of developing type 2 diabetes. Interactive computer-based risk screening (IT) and paper-based risk screening (PT) tools were applied. Participants aged over 25 years with no known diabetes were recruited in six participating pharmacies. Results: A total of 187 clients, mean aged (+SD) was 48.6 (+10.9) years. 35% were at high risk. The mean value of willingness-to-pay for the service fee in IT group was significantly higher than PT group (p=0.013). No significant difference observed for the satisfaction between groups. Conclusions: Non-invasive risk assessment tool, whether paper-based or computerized-based can be applied in community pharmacy to support the enhancing role of pharmacists in chronic disease management. Long term follow up is needed to determine the impact of its application in clinical, humanistic and economic outcomes.

Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

Component Criticality Importance Measures in Thermal Power Plants Design

This paper presents quantitative component criticality importance indices applicable for identifying and ranking critical components in the phase of thermal power plants design. Identifying critical components for power plant reliability provides one important input to decision-making and guidance throughout the development project. The study of components criticality importance indices to several characteristic structural schemes of conventional thermal power plant is presented and discussed.

Degradation Propensity of Welded Mild Steel in Coastal Soil of University of Lagos

Study on corrosion propensity of welded mild steel- bar in soil media around the coastal area of University of Lagos has been carried out using gravimetric method. Six (6) samples each for welded and unwelded mild steels were cut, their initial weights were recorded and buried in two selected soil. The weight losses of these coupons were measured at regular intervals for a period of six months (180 days). The corrosiveness of the soil media varied widely depending on the potency level of its constituents. The results revealed that soil in the studied area have marked variations in composition and contents. Soil medium with a lower pH and higher chloride ion concentration aggressively attacked the coupons with the welded steel coupon corroding faster than unwelded one. The medium resistivity to the flow of current is another strong factor affecting corrosion rate.

Analysis of Behaviour of Real Estate Rates in India- A Case Study of Pune City

Decisions for investment, buying and selling of properties depend upon the market value of that property. Issues arise in arriving at the actual value of the property as well as computing the rate of returns from the estate. Addressing valuation related issues through an understanding of behavior of real property rates provide the means to explore the quality of past decisions and to make valid future decisions. Pune, an important city in India, has witnessed a high rate of growth in past few years. Increased demand for housing and investment in properties has led to increase in the rates of real estate. An attempt has been made to study the change and behavior of rates of real estate and factors influencing the same in Pune city.

Comparison of Bioleaching of Metals from Spent Petroleum Catalyst Using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans

The present investigation deals with bioleaching of spent petroleum catalyst using At. ferrooxidans and At. thiooxidans. The spent catalyst used in the present study was pretreated with acetone to remove the oily hydrocarbons. FESEM and XPS analysis indicated the presence of metals in sulfide and oxide forms in spent catalyst. Both At. ferrooxidans and At. thiooxidans were found to be highly effective in producing the acid. Bioleaching with At. ferrooxidans and At. thiooxidans led to higher recovery of metals compare to control. During bioleaching similar recoveries of metals were obtained using At. ferrooxidans and At. thiooxidans. This might be due to the presence of metals as soluble oxides and sulphides in the spent catalyst. At the end of bioleaching, about 87-90% Ni, 34% Al, 65-73% Mo and 92-97% V were leached using above bacteria. It is elucidated that bioleaching with At. thiooxidans is comparatively more advantageous due to lower cost of sulphur.