Diagnostics of Fatigue Damage of Gas Turbine Engine Blades by Acoustic Emission Method

the work contains the results of complex investigation related to the evaluation of condition of working blades of gas turbine engines during fatigue tests by applying the acoustic emission method. It demonstrates the possibility of estimating the fatigue damage of blades in the process of factory tests. The acoustic emission criteria for detecting and testing the kinetics of fatigue crack distribution were detected. It also shows the high effectiveness of the method for non-destructive testing of condition of solid and cooled working blades for high-temperature gas turbine engines.

An Expert System for Car Failure Diagnosis

Car failure detection is a complicated process and requires high level of expertise. Any attempt of developing an expert system dealing with car failure detection has to overcome various difficulties. This paper describes a proposed knowledge-based system for car failure detection. The paper explains the need for an expert system and the some issues on developing knowledge-based systems, the car failure detection process and the difficulties involved in developing the system. The system structure and its components and their functions are described. The system has about 150 rules for different types of failures and causes. It can detect over 100 types of failures. The system has been tested and gave promising results.

Using Case-Based Reasoning to New Service Development from User Innovation Community in Mobile Application Services

The emergence of mobile application services and App Store has led to the explosive growth of user innovation, which users voluntarily contribute to. User innovation communities where end users freely reveal innovative ideas and needs with other community members are becoming increasingly influential in this area. However, user-s ideas in user innovation community are not enough to be new service opportunity, because some of them can already developed as existing services in App Store. Moreover, the existing services similar to new service opportunity can be significant references to apply analogy to develop service concept. In response, this research proposes Case-Based Reasoning approach to matching the user needs and existing services, identifying unmet opportunistic user needs, and retrieving similar services with opportunity. Due to its intuitive and transparent algorithm, users related to App Store innovation communities can easily employ Case-Based Reasoning based approach to their innovation.

Understanding Grip Choice and Comfort Whilst Hoovering

The hand is one of the essential parts of the body for carrying out Activities of Daily Living (ADLs). Individuals use their hands and fingers in everyday activities in the both the workplace and home. Hand-intensive tasks require diverse and sometimes extreme levels of exertion, depending on the action, movement or manipulation involved. The authors have undertaken several studies looking at grip choice and comfort. It is hoped that in providing improved understanding of discomfort during ADLs this will aid in the design of consumer products. Previous work by the authors outlined a methodology for calculating pain frequency and pain level for a range of tasks. From an online survey undertaken by the authors with regards manipulating objects during everyday tasks, tasks involving gripping were seen to produce the highest levels of pain and discomfort. Questioning of the participants showed that cleaning tasks were seen to be ADL's that produced the highest levels of discomfort, with women feeling higher levels of discomfort than men. This paper looks at the methodology for calculating pain frequency and pain level with particular regards to gripping activities. This methodology shows that activities such as mopping, sweeping and hoovering shows the highest numbers of pain frequency and pain level at 3112.5 frequency per month while the pain level per person doing this action was 0.78.The study then uses thin-film force sensors to analyze the force distribution in the hand whilst hoovering and compares this for differing grip styles and genders. Women were seen to have more of their hand under a higher pressure than men when undertaking hoovering. This suggests that women may feel greater discomfort than men since their hand is at a higher pressure more of the time.

Experimental Study of Subsurface Erosion in River Banks

Subsurface erosion in river banks and its details, in spite of its occurrence in various parts of the world has rarely been paid attention by researchers. In this paper, quantitative concept of the subsurface bank erosion has been investigated for vertical banks. Vertical banks were simulated experimentally by considering a sandy erodible layer overlaid by clayey one under uniformly distributed constant overhead pressure. Results of the experiments are indicated that rate of sandy layer erosion is decreased by an increase in overburden; likewise, substituting 20% of coarse (3.5 mm) sand layer bed material by fine material (1.4 mm) may lead to a decrease in erosion rate by one-third. This signifies the importance of the bed material composition effect on sandy layers erosion due to subsurface erosion in river banks.

System-Level Energy Estimation for SoC based on the Dynamic Behavior of Embedded Software

This paper describes a system-level SoC energy consumption estimation method based on a dynamic behavior of embedded software in the early stages of the SoC development. A major problem of SOC development is development rework caused by unreliable energy consumption estimation at the early stages. The energy consumption of an SoC used in embedded systems is strongly affected by the dynamic behavior of the software. At the early stages of SoC development, modeling with a high level of abstraction is required for both the dynamic behavior of the software, and the behavior of the SoC. We estimate the energy consumption by a UML model-based simulation. The proposed method is applied for an actual embedded system in an MFP. The energy consumption estimation of the SoC is more accurate than conventional methods and this proposed method is promising to reduce the chance of development rework in the SoC development. ∈

Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications

Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Cryptography Over Elliptic Curve Of The Ring Fq[e], e4 = 0

Groups where the discrete logarithm problem (DLP) is believed to be intractable have proved to be inestimable building blocks for cryptographic applications. They are at the heart of numerous protocols such as key agreements, public-key cryptosystems, digital signatures, identification schemes, publicly verifiable secret sharings, hash functions and bit commitments. The search for new groups with intractable DLP is therefore of great importance.The goal of this article is to study elliptic curves over the ring Fq[], with Fq a finite field of order q and with the relation n = 0, n ≥ 3. The motivation for this work came from the observation that several practical discrete logarithm-based cryptosystems, such as ElGamal, the Elliptic Curve Cryptosystems . In a first time, we describe these curves defined over a ring. Then, we study the algorithmic properties by proposing effective implementations for representing the elements and the group law. In anther article we study their cryptographic properties, an attack of the elliptic discrete logarithm problem, a new cryptosystem over these curves.

The Role of Knowledge Management in Enterprise 2.0

The term Enterprise 2.0 (E2.0) describes a collection of organizational and IT practices that help organizations establish flexible work models, visible knowledge-sharing practices, and higher levels of community participation. E2.0 parallels and builds on another term commonly being used in the industry – Web 2.0. E2.0 represents also new packaging for strategic collaboration and Knowledge Management (KM). Organizations rely on collaboration and KM initiatives to attain innovation, growth, productivity, and performance goals.

Prioritizing Service Quality Dimensions:A Neural Network Approach

One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue –despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.

Relationship among Leisure Satisfaction, Spiritual Wellness, and Self-Esteem of Older Adults

This study sought to determine whether there were relationships existed among leisure satisfaction, self-esteem, and spiritual wellness. Four hundred survey instruments were distributed, and 334 effective instruments were returned, for an effective rate of 83.5%. The participants were recruited from a purposive sampling that subjects were at least 60 years of age and retired in Tainan City, Taiwan. Three instruments were used in this research: Leisure Satisfaction Scale (LSS), Self-Esteem Scale (SES), and Spirituality Assessment Scale (SAS). The collected data were analyzed statistically. The findings of this research were as follows: 1. There is significantly correlated between leisure satisfaction and spiritual wellness. 2. There is significantly correlated between leisure satisfaction and self-esteem. 3. There is significantly correlated between spiritual wellness and self-esteem.

Computer Modeling of Drug Distribution after Intravitreal Administration

Intravitreal injection (IVI) is the most common treatment for eye posterior segment diseases such as endopthalmitis, retinitis, age-related macular degeneration, diabetic retinopathy, uveitis, and retinal detachment. Most of the drugs used to treat vitreoretinal diseases, have a narrow concentration range in which they are effective, and may be toxic at higher concentrations. Therefore, it is critical to know the drug distribution within the eye following intravitreal injection. Having knowledge of drug distribution, ophthalmologists can decide on drug injection frequency while minimizing damage to tissues. The goal of this study was to develop a computer model to predict intraocular concentrations and pharmacokinetics of intravitreally injected drugs. A finite volume model was created to predict distribution of two drugs with different physiochemical properties in the rabbit eye. The model parameters were obtained from literature review. To validate this numeric model, the in vivo data of spatial concentration profile from the lens to the retina were compared with the numeric data. The difference was less than 5% between the numerical and experimental data. This validation provides strong support for the numerical methodology and associated assumptions of the current study.

Transmission Model for Plasmodium Vivax Malaria: Conditions for Bifurcation

Plasmodium vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax infection can suffer relapses of the disease. This is due the parasite being able to remain dormant in the liver of the patients where it is able to re-infect the patient after a passage of time. During this stage, the patient is classified as being in the dormant class. The model to describe the transmission of P. vivax malaria consists of a human population divided into four classes, the susceptible, the infected, the dormant and the recovered. The effect of a time delay on the transmission of this disease is studied. The time delay is the period in which the P. vivax parasite develops inside the mosquito (vector) before the vector becomes infectious (i.e., pass on the infection). We analyze our model by using standard dynamic modeling method. Two stable equilibrium states, a disease free state E0 and an endemic state E1, are found to be possible. It is found that the E0 state is stable when a newly defined basic reproduction number G is less than one. If G is greater than one the endemic state E1 is stable. The conditions for the endemic equilibrium state E1 to be a stable spiral node are established. For realistic values of the parameters in the model, it is found that solutions in phase space are trajectories spiraling into the endemic state. It is shown that the limit cycle and chaotic behaviors can only be achieved with unrealistic parameter values.

Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection

We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.

Institutionalising Corporate Social Responsibility: A Study on the CSR Statements on Corporate Websites of Malaysian and Singapore Corporations

The purpose of this paper is to examine the current state of corporate social responsibility statements on corporate websites of Malaysian and Singaporean corporations and analyze how the CSR statements contribute in building a unique corporate identity of corporations. Content analysis is employed to examine the websites of Malaysian and Singaporean consumer corporations. It is believed that generally most companies tend to publish and communicate their CSR statements visibly to general stakeholders. However, there is a significantly different outcome of the articulation of CSR on practices on websites between Malaysian and Singaporean consumer corporations. A number of Singaporean organizations were found less concerned with CSR practices as compared to Malaysian organizations. The findings indicate a need for corporations in Malaysia and Singapore to orchestrate their core competence of CSR activities in order to develop a unique corporate identity in a global business environment.

Analysis of a Hydroelectric Plant connected to Electrical Power System in the Physical Domain

A bond graph model of a hydroelectric plant is proposed. In order to analyze the system some structural properties of a bond graph are used. The structural controllability of the hydroelctric plant is described. Also, the steady state of the state variables applying the bond graph in a derivative causality assignment is obtained. Finally, simulation results of the system are shown.

Anomaly Based On Frequent-Outlier for Outbreak Detection in Public Health Surveillance

Public health surveillance system focuses on outbreak detection and data sources used. Variation or aberration in the frequency distribution of health data, compared to historical data is often used to detect outbreaks. It is important that new techniques be developed to improve the detection rate, thereby reducing wastage of resources in public health. Thus, the objective is to developed technique by applying frequent mining and outlier mining techniques in outbreak detection. 14 datasets from the UCI were tested on the proposed technique. The performance of the effectiveness for each technique was measured by t-test. The overall performance shows that DTK can be used to detect outlier within frequent dataset. In conclusion the outbreak detection technique using anomaly-based on frequent-outlier technique can be used to identify the outlier within frequent dataset.

Rheological Modeling for Production of High Quality Polymeric

The fundamental defect inherent to the thermoforming technology is wall-thickness variation of the products due to inadequate thermal processing during production of polymer. A nonlinear viscoelastic rheological model is implemented for developing the process model. This model describes deformation process of a sheet in thermoforming process. Because of relaxation pause after plug-assist stage and also implementation of two stage thermoforming process have minor wall-thickness variation and consequently better mechanical properties of polymeric articles. For model validation, a comparative analysis of the theoretical and experimental data is presented.

Color Constancy using Superpixel

Color constancy algorithms are generally based on the simplified assumption about the spectral distribution or the reflection attributes of the scene surface. However, in reality, these assumptions are too restrictive. The methodology is proposed to extend existing algorithm to applying color constancy locally to image patches rather than globally to the entire images. In this paper, a method based on low-level image features using superpixels is proposed. Superpixel segmentation partition an image into regions that are approximately uniform in size and shape. Instead of using entire pixel set for estimating the illuminant, only superpixels with the most valuable information are used. Based on large scale experiments on real-world scenes, it can be derived that the estimation is more accurate using superpixels than when using the entire image.

A Novel Nucleus-Based Classifier for Discrimination of Osteoclasts and Mesenchymal Precursor Cells in Mouse Bone Marrow Cultures

Bone remodeling occurs by the balanced action of bone resorbing osteoclasts (OC) and bone-building osteoblasts. Increased bone resorption by excessive OC activity contributes to malignant and non-malignant diseases including osteoporosis. To study OC differentiation and function, OC formed in in vitro cultures are currently counted manually, a tedious procedure which is prone to inter-observer differences. Aiming for an automated OC-quantification system, classification of OC and precursor cells was done on fluorescence microscope images based on the distinct appearance of fluorescent nuclei. Following ellipse fitting to nuclei, a combination of eight features enabled clustering of OC and precursor cell nuclei. After evaluating different machine-learning techniques, LOGREG achieved 74% correctly classified OC and precursor cell nuclei, outperforming human experts (best expert: 55%). In combination with the automated detection of total cell areas, this system allows to measure various cell parameters and most importantly to quantify proteins involved in osteoclastogenesis.