Best Combination of Design Parameters for Buildings with Buckling-Restrained Braces

Buildings vulnerability due to seismic activity has been highly studied since the middle of last century. As a solution to the structural and non-structural damage caused by intense ground motions, several seismic energy dissipating devices, such as buckling-restrained braces (BRB), have been proposed. BRB have shown to be effective in concentrating a large portion of the energy transmitted to the structure by the seismic ground motion. A design approach for buildings with BRB elements, which is based on a seismic Displacement-Based formulation, has recently been proposed by the coauthors in this paper. It is a practical and easy design method which simplifies the work of structural engineers. The method is used here for the design of the structure-BRB damper system. The objective of the present study is to extend and apply a methodology to find the best combination of design parameters on multiple-degree-of-freedom (MDOF) structural frame – BRB systems, taking into account simultaneously: 1) initial costs and 2) an adequate engineering demand parameter. The design parameters considered here are: the stiffness ratio (α = Kframe/Ktotal), and the strength ratio (γ = Vdamper/Vtotal); where K represents structural stiffness and V structural strength; and the subscripts "frame", "damper" and "total" represent: the structure without dampers, the BRB dampers and the total frame-damper system, respectively. The selection of the best combination of design parameters α and γ is based on an initial costs analysis and on the structural dynamic response of the structural frame-damper system. The methodology is applied to a 12-story 5-bay steel building with BRB, which is located on the intermediate soil of Mexico City. It is found the best combination of design parameters α and γ for the building with BRB under study.

Dental Students’ Attitude towards Problem-Based Learning before and after Implementing 3D Electronic Dental Models

Objectives: In recent years, the Faculty of Dentistry of the University of Hong Kong have extended the implementation of 3D electronic models (e-models) into problem-based learning (PBL) of the Bachelor of Dental Surgery (BDS) curriculum, aiming at mutual enhancement of PBL teaching quality and the students’ skills in using e-models. This study focuses on the effectiveness of e-models serving as a tool to enhance the students’ skills and competences in PBL. Methods: The questionnaire surveys are conducted to measure 50 fourth-year BDS students’ attitude change between beginning and end of blended PBL tutorials. The response rate of this survey is 100%. Results: The results of this study show the students’ agreement on enhancement of their learning experience after e-model implementation and their expectation to have more blended PBL courses in the future. The potential of e-models in cultivating students’ self-learning skills reduces their dependence on others, while improving their communication skills to argue about pros and cons of different treatment options. The students’ independent thinking ability and problem solving skills are promoted by e-model implementation, resulting in better decision making in treatment planning. Conclusion: It is important for future dental education curriculum planning to cope with the students’ needs, and offer support in the form of software, hardware and facilitators’ assistance for better e-model implementation.

The Effect of Smartphones on Human Health Relative to User’s Addiction: A Study on a Wide Range of Audiences in Jordan

The objective of this study is to investigate the effect of the excessive use of smartphones. Smartphones have enormous effects on the human body in that some musculoskeletal disorders (MSDs) and health problems might evolve. These days, there is a wide use of the smartphones among all age groups of society, thus, the focus on smartphone effects on human behavior and health, especially on the young and elderly people, becomes a crucial issue. This study was conducted in Jordan on smartphone users for different genders and ages, by conducting a survey to collect data related to the symptoms and MSDs that are resulted from the excessive use of smartphones. A total of 357 responses were used in the analysis. The main related symptoms were numbness, fingers pain, and pain in arm, all linked to age and gender for comparative reasons. A statistical analysis was performed to find the effects of extensive usage of a smartphone for long periods of time on the human body. Results show that the significant variables were the vision problems and the time spent when using the smartphone that cause vision problems. Other variables including age of user and ear problems due to the use of the headsets were found to be a border line significant.

Supplier Selection by Bi-Objectives Mixed Integer Program Approach

In the past, there was a lot of excellent research studies conducted on topics related to supplier selection. Because the considered factors of supplier selection are complicated and difficult to be quantified, most researchers deal supplier selection issues by qualitative approaches. Compared to qualitative approaches, quantitative approaches are less applicable in the real world. This study tried to apply the quantitative approach to study a supplier selection problem with considering operation cost and delivery reliability. By those factors, this study applies Normalized Normal Constraint Method to solve the dual objectives mixed integer program of the supplier selection problem.

Important Factors for Successful Solution of Emotional Situations: Empirical Study on Young People

Attempts to split the construct of emotional intelligence (EI) into separate components – ability to understand own and others’ emotions and ability to control own and others’ emotions may be meaningful more theoretically than practically. In real life, a personality encounters various emotional situations that require exhibition of complex EI to solve them. Emotional situation solution tests enable measurement of such undivided EI. The object of the present study is to determine sociodemographic and other factors that are important for emotional situation solutions. The study involved 1,430 participants from various regions of Lithuania. The age of participants varied from 17 years to 27 years. Emotional social and interpersonal situation scale EI-DARL-V2 was used. Each situation had two mandatory answering formats: The first format contained assignments associated with hypothetical theoretical knowledge of how the situation should be solved, while the second format included the question of how the participant would personally resolve the given situation in reality. A questionnaire that contained various sociodemographic data of subjects was also presented. Factors, statistically significant for emotional situation solution, have been determined: gender, family structure, the subject’s relation with his or her mother, mother’s occupation, subjectively assessed financial situation of the family, level of education of the subjects and his or her parents, academic achievement, etc. The best solvers of emotional situations are women with high academic achievements. According to their chosen study profile/acquired profession, they are related to the fields in social sciences and humanities. The worst solvers of emotional situations are men raised in foster homes. They are/were bad students and mostly choose blue-collar professions.

Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Effect of Bacillus subtilis Pb6 on Growth and Gut Microflora in Clostridium perfringens Challenged Broilers

The objective of current study was to investigate the effect of Bacillus subtilis PB6 (CloSTAT) as a probiotic in broilers. The corn-soybean based diet was divided into four treatment groups; T1 (basal diet with no probiotic and no Clostridium perfringens); T2 (basal diet challenged with C. perfringens without probiotic); T3 (basal diet challenged with C. perfringens having 0.05% probiotic); T4 (basal diet challenged with C. perfringens having 0.1% probiotic). Every treatment group had four replicates with 24 birds each. Body weight and feed intake were measured on weekly basis, while ileal bacterial count was recorded on day-28 following Clostridium perfringens challenge. The 0.1% probiotic treatment showed 7.2% increase in average feed intake (P=0.05) and 8% increase in body weight compared to T2. In 0.1% treatment body weight was 5% higher than T3 (P=0.02). It was also observed that 0.1% treatment had improved feed conversion ratio (1.77) on 6th week. No effect of treatment was observed on mortality and ileal bacterial count. The current study indicated that 0.1% use of probiotic had positive response in C. perfringens challenged broilers.

Simulation Study of Asphaltene Deposition and Solubility of CO2 in the Brine during Cyclic CO2 Injection Process in Unconventional Tight Reservoirs

A compositional reservoir simulation model (CMG-GEM) was used for cyclic CO2 injection process in unconventional tight reservoir. Cyclic CO2 injection is an enhanced oil recovery process consisting of injection, shut-in, and production. The study of cyclic CO2 injection and hydrocarbon recovery in ultra-low permeability reservoirs is mainly a function of rock, fluid, and operational parameters. CMG-GEM was used to study several design parameters of cyclic CO2 injection process to distinguish the parameters with maximum effect on the oil recovery and to comprehend the behavior of cyclic CO2 injection in tight reservoir. On the other hand, permeability reduction induced by asphaltene precipitation is one of the major issues in the oil industry due to its plugging onto the porous media which reduces the oil productivity. In addition to asphaltene deposition, solubility of CO2 in the aquifer is one of the safest and permanent trapping techniques when considering CO2 storage mechanisms in geological formations. However, the effects of the above uncertain parameters on the process of CO2 enhanced oil recovery have not been understood systematically. Hence, it is absolutely necessary to study the most significant parameters which dominate the process. The main objective of this study is to improve techniques for designing cyclic CO2 injection process while considering the effects of asphaltene deposition and solubility of CO2 in the brine in order to prevent asphaltene precipitation, minimize CO2 emission, optimize cyclic CO2 injection, and maximize oil production.

An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects

In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.

Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry

Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time.

Object-Oriented Multivariate Proportional-Integral-Derivative Control of Hydraulic Systems

This paper presents and discusses the application of the object-oriented modelling software SIMSCAPE to hydraulic systems, with particular reference to multivariable proportional-integral-derivative (PID) control. As a result, a particular modelling approach of a double cylinder-piston coupled system is proposed and motivated, and the SIMULINK based PID tuning tool has also been used to select the proper controller parameters. The paper demonstrates the usefulness of the object-oriented approach when both physical modelling and control are tackled.

Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria

Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; Dioscorea rotundata); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture.

Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients

Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.

Hybrid Stainless Steel Girder for Bridge Construction

The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown.

Aggregation Scheduling Algorithms in Wireless Sensor Networks

In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.