Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators

This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.

Fuzzy Estimation of Parameters in Statistical Models

Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.

Influence of Social Factors and Motives on Commitment of Sport Events Volunteers

In sport, human resources management gives special attention to method of applying volunteers, their maintenance, and participation of volunteers with each other and management approaches for better operation of events celebrants. The recognition of volunteers- characteristics and motives is important to notice, because it makes the basis of their participation and commitment at sport environment. The motivation and commitment of 281 volunteers were assessed using the organizational commitment scale, motivation scale and personal characteristics questionnaire.The descriptive results showed that; 64% of volunteers were women with age average 21/24 years old. They were physical education student, single (71/9%), without occupation (53%) and with average of 5 years sport experience. Their most important motivation was career factor and the most important commitment factor was normative factor. The results of examining the hypothesized showed that; age, sport experience and education are effective in the amount of volunteers- commitment. And the motive factors such as career, material, purposive and protective factors also have the power to predict the amount of sports volunteers- commitment value. Therefore it is recommended to provide possible opportunities for volunteers and carrying out appropriate instructional courses by events executive managers.

Determination of Measurement Uncertainty in Extracting of Forming Limit Diagrams

In this research, Forming Limit Diagrams for supertension sheet metals which are using in automobile industry have been obtained. The exerted strains to sheet metals have been measured with four different methods and the errors of each method have also been represented. These methods have been compared with together and the most efficient and economic way of extracting of the exerted strains to sheet metals has been introduced. In this paper total error and uncertainty of FLD extraction procedures have been derived. Determination of the measurement uncertainty in extracting of FLD has a great importance in design and analysis of the sheet metal forming process.

Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image

Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.

Hybrid Model Based on Artificial Immune System and Cellular Automata

The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.

A New blaVIM Gene in a Pseudomonas putida Isolated from ENT Units in Sulaimani Hospitals

A total of twenty tensile biopsies were collected from children undergoing tonsillectomy from teaching hospital ENT department and Kurdistan private hospital in sulaimani city. All biopsies were homogenized and cultured; the obtained bacterial isolates were purified and identified by biochemical tests and VITEK 2 compact system. Among the twenty studied samples, only one Pseudomonas putida with probability of 99% was isolated. Antimicrobial susceptibility was carried out by disk diffusion method, Pseudomonas putida showed resistance to all antibiotics used except vancomycin. The isolate further subjected to PCR and DNA sequence analysis of blaVIM gene using different set of primers for different regions of VIM gene. The results were found to be PCR positive for the blaVIM gene. To determine the sequence of blaVIM gene, DNA sequencing performed. Sequence alignment of blaVIM gene with previously recorded blaVIM gene in NCBI- database showed that P. putida isolate have different blaVIM gene.

Robust Ellipse Detection by Fitting Randomly Selected Edge Patches

In this paper, a method to detect multiple ellipses is presented. The technique is efficient and robust against incomplete ellipses due to partial occlusion, noise or missing edges and outliers. It is an iterative technique that finds and removes the best ellipse until no reasonable ellipse is found. At each run, the best ellipse is extracted from randomly selected edge patches, its fitness calculated and compared to a fitness threshold. RANSAC algorithm is applied as a sampling process together with the Direct Least Square fitting of ellipses (DLS) as the fitting algorithm. In our experiment, the method performs very well and is robust against noise and spurious edges on both synthetic and real-world image data.

3DARModeler: a 3D Modeling System in Augmented Reality Environment

This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.

Learning of Class Membership Values by Ellipsoidal Decision Regions

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.

Optical Road Monitoring of the Future Smart Roads – Preliminary Results

It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.

An Experimental and Numerical Investigation of Press Force and Weld Line Displacement of Tailor Welded Blanks in Conventional and Rubber Pad Sheet Metal Forming

To investigate the behavior of sheet metals during forming tailor welded blanks (TWB) of various thickness made via Co2 Laser welding are under consideration. These blanks are formed used two different forming methods of rubber as well as the conventional punch and die methods. The main research objective is the effects of using a rubber die instead of a solid one the displacement of the weld line and the press force needed for forming. Specimens with thicknesses of 0.5, 0.6, 0.8 and 1mm are subjected to Erichsen two dimensional tests and the resulted force for each case are compared. This is followed by a theoretical and numerical study of press force and weld line displacement. It is concluded that using rubber pad forming (RPF) causes a reduction in weld line displacement and an increase in the press force.

Using Neural Network for Execution of Programmed Pulse Width Modulation (PPWM) Method

Application of neural networks in execution of programmed pulse width modulation (PPWM) of a voltage source inverter (VSI) is studied in this paper. Using the proposed method it is possible to cancel out the desired harmonics in output of VSI in addition to control the magnitude of fundamental harmonic, contineously. By checking the non-trained values and a performance index, the most appropriate neural network is proposed. It is shown that neural networks may solve the custom difficulties of practical utilization of PPWM such as large size of memory, complex digital circuits and controlling the magnitude of output voltage in a discrete manner.

Chemical Composition of Variety 'Nante' Hybrid Carrots Cultivated in Latvia

carrot is one of the important root vegetable crops, and it is highly nutritious as it contains appreciable amount of vitamins, minerals and β-carotene. The major objective of current research was to evaluate the chemical composition of carrot variety 'Nante' hybrids in general and to select the best samples for fresh-cut salad production. The research was accomplished on fresh in Latvia cultivated carrots harvested in Zemgale region in the first part of October, 2011 and immediately used for experiments. Late-bearing variety 'Nante' hybrid carrots were used for analysis: 'Nante/Berlikum', 'Nante/Maestro', 'Nante/Forto', 'Nante/Bolero' and 'Nante/Champion'. The quality parameters as moisture, soluble solid, firmness, b-carotene, carotenoid, color, polyphenols, total phenolic compounds and total antioxidant capacity were analyzed using standard methods. For fresh-cut salad production as more applicable could be recommended hybrids 'Nante/Forto' and 'Nante/Berlikum' - mainly because it-s higher nutritive value, as higher total phenolic compounds, polyphenols and pronounced antioxidant capacity.

An Effective Approach for Distribution System Power Flow Solution

An effective approach for unbalanced three-phase distribution power flow solutions is proposed in this paper. The special topological characteristics of distribution networks have been fully utilized to make the direct solution possible. Two matrices–the bus-injection to branch-current matrix and the branch-current to busvoltage matrix– and a simple matrix multiplication are used to obtain power flow solutions. Due to the distinctive solution techniques of the proposed method, the time-consuming LU decomposition and forward/backward substitution of the Jacobian matrix or admittance matrix required in the traditional power flow methods are no longer necessary. Therefore, the proposed method is robust and time-efficient. Test results demonstrate the validity of the proposed method. The proposed method shows great potential to be used in distribution automation applications.

Fingerprint Verification System Using Minutiae Extraction Technique

Most fingerprint recognition techniques are based on minutiae matching and have been well studied. However, this technology still suffers from problems associated with the handling of poor quality impressions. One problem besetting fingerprint matching is distortion. Distortion changes both geometric position and orientation, and leads to difficulties in establishing a match among multiple impressions acquired from the same finger tip. Marking all the minutiae accurately as well as rejecting false minutiae is another issue still under research. Our work has combined many methods to build a minutia extractor and a minutia matcher. The combination of multiple methods comes from a wide investigation into research papers. Also some novel changes like segmentation using Morphological operations, improved thinning, false minutiae removal methods, minutia marking with special considering the triple branch counting, minutia unification by decomposing a branch into three terminations, and matching in the unified x-y coordinate system after a two-step transformation are used in the work.

Feature Weighting and Selection - A Novel Genetic Evolutionary Approach

A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.

Generalized Predictive Control of Batch Polymerization Reactor

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Particle Filter Applied to Noisy Synchronization in Polynomial Chaotic Maps

Polynomial maps offer analytical properties used to obtain better performances in the scope of chaos synchronization under noisy channels. This paper presents a new method to simplify equations of the Exact Polynomial Kalman Filter (ExPKF) given in [1]. This faster algorithm is compared to other estimators showing that performances of all considered observers vanish rapidly with the channel noise making application of chaos synchronization intractable. Simulation of ExPKF shows that saturation drawn on the emitter to keep it stable impacts badly performances for low channel noise. Then we propose a particle filter that outperforms all other Kalman structured observers in the case of noisy channels.

Problems and Obstacles to Value Creation of Thai Monk-s Bowls: The Case Study of Ban-Baat Village, Bangkok

This research aims to study value-creation process of producing monk-s bowls, Thai traditional handicrafts, which is facing problems in adapting to the changing society. It also aims to identify problems and obstacles to value creation. This research is based on a case study of monk-s bowl manufactures from Ban-Baat Village, Bangkok. The conceptual framework is based on the model of value chain to analyze the process. The research methodology is qualitative. This research found that the value-creation process of monk-s bowls consists of eight activities contributing to adding value to the products and increasing profits to the producers in return. Five major problems and obstacles are found. The research suggests that these problems and obstacles limit the manufacturers- potential for creating more valued product and lead to business stagnation. These problems should be addressed and solved with collaboration among the government, the private sector and the manufacturers.