Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks

To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.

Craniometric Analysis of Foramen Magnum for Estimation of Sex

Human skull is shown to exhibit numerous sexually dimorphic traits. Estimation of sex is a challenging task especially when a part of skull is brought for medicolegal investigation. The present research was planned to evaluate the sexing potential of the dimensions of foramen magnum in forensic identification by craniometric analysis. Length and breadth of the foramen magnum was measured using Vernier calipers and the area of foramen magnum was calculated. The length, breadth, and area of foramen magnum were found to be larger in males than females. Sexual dimorphism index was calculated to estimate the sexing potential of each variable. The study observations are suggestive of the limited utility of the craniometric analysis of foramen magnum during the examination of skull and its parts in estimation of sex.

Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding

Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.

Estimation Method for the Construction of Hydrogen Society with Various Biomass Resources in Japan-Project of Cost Reductions in Biomass Transport and Feasibility for Hydrogen Station with Biomass-

It was determined that woody biomass and livestock excreta can be utilized as hydrogen resources and hydrogen produced from such sources can be used to fill fuel cell vehicles (FCVs) at hydrogen stations. It was shown that the biomass transport costs for hydrogen production may be reduced the costs for co-generation. In the Tokyo Metropolitan Area, there are only a few sites capable of producing hydrogen from woody biomass in amounts greater than 200 m3/h-the scale required for a hydrogen station to be operationally practical. However, in the case of livestock excreta, it was shown that 15% of the municipalities in this area are capable of securing sufficient biomass to be operationally practical for hydrogen production. The differences in feasibility of practical operation depend on the type of biomass.

Knowledge Based Model for Power Transformer Life Cycle Management Using Knowledge Engineering

Under the limitation of investment budget, a utility company is required to maximize the utilization of their existing assets during their life cycle satisfying both engineering and financial requirements. However, utility does not have knowledge about the status of each asset in the portfolio neither in terms of technical nor financial values. This paper presents a knowledge based model for the utility companies in order to make an optimal decision on power transformer with their utilization. CommonKADS methodology, a structured development for knowledge and expertise representation, is utilized for designing and developing knowledge based model. A case study of One MVA power transformer of Nepal Electricity Authority is presented. The results show that the reusable knowledge can be categorized, modeled and utilized within the utility company using the proposed methodologies. Moreover, the results depict that utility company can achieve both engineering and financial benefits from its utilization.

A Forecast Model for Projecting the Amount of Hazardous Waste

The objective of the paper is to develop the forecast model for the HW flows. The methodology of the research included 6 modules: historical data, assumptions, choose of indicators, data processing, and data analysis with STATGRAPHICS, and forecast models. The proposed methodology was validated for the case study for Latvia. Hypothesis on the changes in HW for time period of 2010-2020 have been developed and mathematically described with confidence level of 95.0% and 50.0%. Sensitivity analysis for the analyzed scenarios was done. The results show that the growth of GDP affects the total amount of HW in the country. The total amount of the HW is projected to be within the corridor of – 27.7% in the optimistic scenario up to +87.8% in the pessimistic scenario with confidence level of 50.0% for period of 2010-2020. The optimistic scenario has shown to be the least flexible to the changes in the GDP growth.

Modeling and Parametric Study for CO2/CH4 Separation Using Membrane Processes

The upgrading of low quality crude natural gas (NG) is attracting interest due to high demand of pipeline-grade gas in recent years. Membrane processes are commercially proven technology for the removal of impurities like carbon dioxide from NG. In this work, cross flow mathematical model has been suggested to be incorporated with ASPEN HYSYS as a user defined unit operation in order to design the membrane system for CO2/CH4 separation. The effect of operating conditions (such as feed composition and pressure) and membrane selectivity on the design parameters (methane recovery and total membrane area required for the separation) has been studied for different design configurations. These configurations include single stage (with and without recycle) and double stage membrane systems (with and without permeate or retentate recycle). It is shown that methane recovery can be improved by recycling permeate or retentate stream as well as by using double stage membrane systems. The ASPEN HYSYS user defined unit operation proposed in the study has potential to be applied for complex membrane system design and optimization.

Goodwill in the Current Greek Accounting Environment

The growing interest in the issue of intangible assets not only in the scientific community but also in some professional bodies internationally can be explained by several points of view. From the business perspective, enterprises are increasingly motivated by external and internal forces to measure and proactively manage their intangibles. With respect to the issue of intangibles, goodwill has been debated in many countries throughout the world. Despite the numerous efforts and the existence of international accounting standards there is not yet a common accepted accounting treatment for goodwill. This study attempts on the one hand to impress the accounting treatment of goodwill internationally, on the other hand analyses the major subjects in relation to the accounting treatment of goodwill in Greece, since 2005, year where the international accounting standards have been in use for the Greek listed companies. The results indicate that the accounting treatment for the goodwill in Greece, despite the effort for accounting harmonization in Europe from 2005, sustains many differences especially for the no listed companies.

Mixture Design Experiment on Flow Behaviour of O/W Emulsions as Affected by Polysaccharide Interactions

Interaction effects of xanthan gum (XG), carboxymethyl cellulose (CMC), and locust bean gum (LBG) on the flow properties of oil-in-water emulsions were investigated by a mixture design experiment. Blends of XG, CMC and LBG were prepared according to an augmented simplex-centroid mixture design (10 points) and used at 0.5% (wt/wt) in the emulsion formulations. An appropriate mathematical model was fitted to express each response as a function of the proportions of the blend components that are able to empirically predict the response to any blend of combination of the components. The synergistic interaction effect of the ternary XG:CMC:LBG blends at approximately 33-67% XG levels was shown to be much stronger than that of the binary XG:LBG blend at 50% XG level (p < 0.05). Nevertheless, an antagonistic interaction effect became significant as CMC level in blends was more than 33% (p < 0.05). Yield stress and apparent viscosity (at 10 s-1) responses were successfully fitted with a special quartic model while flow behaviour index and consistency coefficient were fitted with a full quartic model (R2 adjusted ≥ 0.90). This study found that a mixture design approach could serve as a valuable tool in better elucidating and predicting the interaction effects beyond the conventional twocomponent blends.

An Immersive Motion Capture Environment

Motion capturing technology has been used for quite a while and several research has been done within this area. Nevertheless, we discovered open issues within current motion capturing environments. In this paper we provide a state-of-the-art overview of the addressed research areas and show issues with current motion capturing environments. Observations, interviews and questionnaires have been used to reveal the challenges actors are currently facing in a motion capturing environment. Furthermore, the idea to create a more immersive motion capturing environment to improve the acting performances and motion capturing outcomes as a potential solution is introduced. It is hereby the goal to explain the found open issues and the developed ideas which shall serve for further research as a basis. Moreover, a methodology to address the interaction and systems design issues is proposed. A future outcome could be that motion capture actors are able to perform more naturally, especially if using a non-body-worn solution.

Modified Vector Quantization Method for Image Compression

A low bit rate still image compression scheme by compressing the indices of Vector Quantization (VQ) and generating residual codebook is proposed. The indices of VQ are compressed by exploiting correlation among image blocks, which reduces the bit per index. A residual codebook similar to VQ codebook is generated that represents the distortion produced in VQ. Using this residual codebook the distortion in the reconstructed image is removed, thereby increasing the image quality. Our scheme combines these two methods. Experimental results on standard image Lena show that our scheme can give a reconstructed image with a PSNR value of 31.6 db at 0.396 bits per pixel. Our scheme is also faster than the existing VQ variants.

On Generalized Exponential Fuzzy Entropy

In the present communication, the existing measures of fuzzy entropy are reviewed. A generalized parametric exponential fuzzy entropy is defined.Our study of the four essential and some other properties of the proposed measure, clearly establishes the validity of the measure as an entropy.

An Adaptive Virtual Desktop Service in Cloud Computing Platform

Cloud computing is becoming more and more matured over the last few years and consequently the demands for better cloud services is increasing rapidly. One of the research topics to improve cloud services is the desktop computing in virtualized environment. This paper aims at the development of an adaptive virtual desktop service in cloud computing platform based on our previous research on the virtualization technology. We implement cloud virtual desktop and application software streaming technology that make it possible for providing Virtual Desktop as a Service (VDaaS). Given the development of remote desktop virtualization, it allows shifting the user’s desktop from the traditional PC environment to the cloud-enabled environment, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the platform maintenances and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote desktop service represents the next significant step to the mobile workplace, and it lets users access their desktop environments from virtually anywhere.

Local Steerable Pyramid Binary Pattern Sequence LSPBPS for Face Recognition Method

In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently number of approaches have been proposed to deal with such variability. The aim of this work is to introduce an efficient local appearance feature extraction method based steerable pyramid (SP) for face recognition. Local information is extracted from SP sub-bands using LBP(Local binary Pattern). The underlying statistics allow us to reduce the required amount of data to be stored. The experiments carried out on different face databases confirm the effectiveness of the proposed approach.

Robustness of Hybrid Learning Acceleration Feedback Control Scheme in Flexible Manipulators

This paper describes a practical approach to design and develop a hybrid learning with acceleration feedback control (HLC) scheme for input tracking and end-point vibration suppression of flexible manipulator systems. Initially, a collocated proportionalderivative (PD) control scheme using hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a further hybrid control scheme of the collocated PD control and iterative learning control with acceleration feedback using genetic algorithms (GAs) to optimize the learning parameters. Experimental results of the response of the manipulator with the control schemes are presented in the time and frequency domains. The performance of the HLC is assessed in terms of input tracking, level of vibration reduction at resonance modes and robustness with various payloads.

Analysis and Performance Evaluation of Noise-Reduction Transformer

The present paper deals with the analysis and development of noise-reduction transformer that has a filter function for conductive noise transmission. Two types of prototype noise-reduction transformers with two different output voltages are proposed. To determine an optimum design for the noise-reduction transformer, noise attenuation characteristics are discussed based on the experiments and the equivalent circuit analysis. The analysis gives a relation between the circuit parameters and the noise attenuation. High performance step-down noise-reduction transformer for direct power supply to electronics equipment is developed. The input voltage of the transformer is 100 V and the output voltage is 5 V. Frequency characteristics of noise attenuation are discussed, and prevention of pulse noise transmission is demonstrated. Normal mode noise attenuation of this transformer is –80 dB, and common mode exceeds –90 dB. The step-down noise-reduction transformer eliminates pulse noise efficiently.

An Adversarial Construction of Instability Bounds in LIS Networks

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

Design for Reliability and Manufacturing Yield (Study and Modeling of Defects in Integrated Circuits for their Reliability Analysis)

In this document, we have proposed a robust conceptual strategy, in order to improve the robustness against the manufacturing defects and thus the reliability of logic CMOS circuits. However, in order to enable the use of future CMOS technology nodes this strategy combines various types of design: DFR (Design for Reliability), techniques of tolerance: hardware redundancy TMR (Triple Modular Redundancy) for hard error tolerance, the DFT (Design for Testability. The Results on largest ISCAS and ITC benchmark circuits show that our approach improves considerably the reliability, by reducing the key factors, the area costs and fault tolerance probability.

Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach

The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.

Topographical Image Transference Compatibility Generated Through Moiré Technique Applying Parametrical Softwares of Computer Assisted Design

Computer aided design accounts with the support of parametric software in the design of machine components as well as of any other pieces of interest. The complexities of the element under study sometimes offer certain difficulties to computer design, or ever might generate mistakes in the final body conception. Reverse engineering techniques are based on the transformation of already conceived body images into a matrix of points which can be visualized by the design software. The literature exhibits several techniques to obtain machine components dimensional fields, as contact instrument (MMC), calipers and optical methods as laser scanner, holograms as well as moiré methods. The objective of this research work was to analyze the moiré technique as instrument of reverse engineering, applied to bodies of nom complex geometry as simple solid figures, creating matrices of points. These matrices were forwarded to a parametric software named SolidWorks to generate the virtual object. Volume data obtained by mechanical means, i.e., by caliper, the volume obtained through the moiré method and the volume generated by the SolidWorks software were compared and found to be in close agreement. This research work suggests the application of phase shifting moiré methods as instrument of reverse engineering, serving also to support farm machinery element designs.