A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

CAD-Based Modelling of Surface Roughness in Face Milling

The quality of machined surfaces is an important characteristic of cutting processes and surface roughness has strong effects on the performance of sliding, moving components. The ability to forecast these values for a given process has been of great interests among researchers for a long time. Different modeling procedures and algorithms have been worked-out, and each has its own advantages and drawbacks. A new method will be introduced in this paper which will make it possible to calculate both the profile (2D) and surface (3D) parameters of theoretical roughness in the face milling of plain surfaces. This new method is based on an expediently developed CAD model, and uses a professional program for the roughness evaluation. Cutting experiments were performed on 42CrMo4 specimens in order to validate the accuracy of the model. The results have revealed that the method is able to predict surface roughness with good accuracy.

Proximate Composition and Textural Properties of Cooked Sausages Formulated from Mechanically Deboned Chicken Meat with Addition of Chicken Offal

Proximate composition (moisture, protein, total fat, and total ash) and textural characteristics (hardness, adhesiveness, springiness, cohesiveness, chewiness and firmness and work of shear) of cooked sausages formulated from mechanically deboned chicken meat (MDCM) with addition of chicken offal (heart, gizzard or liver) were investigated. Chicken offal replaced equal weight (15 kg) of MDCM in standard sausage formulation. Regarding proximate composition sausage with heart addition was significantly (P

Educating Students in Business Process Management with Simulation Games

The aim of this paper is to present a framework for empirical investigation of the effectiveness of simulation games for student learning of BPM concept. A future research methodology is explained and a normative model that extends the standard TAM model by introducing latent and mediating variables into the relationship between independent variables and dependent variable is developed. Future research propositions are defined in order to examine the benefits that can be achieved through the use of BPM simulation games in ERP courses.

Effect of Ripening Conditions and Storage Time on Oxidative and Sensory Stability of Petrovská Klobása Sausage

The influence of ripening conditions (traditional and industrial) on oxidative and sensory stability of dry fermented sausage (Petrovská klobása), during 7 months of storage, was investigated. During the storage period the content of free fatty acids was significantly higher (P

Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control

Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.

Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials

The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.

Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

The Contribution of Sulfate and Oxidized Organics in Climatically Important Ultrafine Particles at a Coral Reef Environment

In order to investigate the properties of coral reef origin secondary aerosol and especially the contribution of secondary organic aerosol, ethanol affinity to atmospheric nucleation mode particles (diameter

Secondary Organic Contribution to Particles Formed on the Ice Melted Arctic Ocean

Due to climate warming and consequently due to ice and snow melting of the Arctic Ocean, the highly biologically active ocean surface area has been expanding quickly making possible longer marine biota growth seasons during polar summers. That increase the probability of the remote marine environment secondary contribution, especially secondary organic contribution, to the particle production and particle growth events and particle properties, consequently effecting on the open ocean, pack ice and ground based regions radiation budget and thus on the feedbacks between arctic biota, particles, clouds, and climate.

Stability Analysis of Fractional Order Systems with Time Delay

In this paper, we mainly study the stability of linear and interval linear fractional systems with time delay. By applying the characteristic equations, a necessary and sufficient stability condition is obtained firstly, and then some sufficient conditions are deserved. In addition, according to the equivalent relationship of fractional order systems with order 0 < α ≤ 1 and with order 1 ≤ β < 2, one may get more relevant theorems. Finally, two examples are provided to demonstrate the effectiveness of our results.

Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall

A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.

Designing an Optimal Safe Layout for a Fuel Storage Tanks Farm: Case Study of Jaipur Oil Depot

Storage tank farms are essential industrial facilities to accumulate oil, petrochemicals and gaseous products. Since tank farms contain huge mass of fuel and hazardous materials, they are always targets of serious accidents such as fire, explosion, spill and toxic release which may cause severe impacts on human health, environmental and properties. Although having a safe layout is not able to prevent initiating accidents, however it effectively controls and reduces the adverse impact of such accidents. The aim of this paper is to determine the optimal layout for a storage tank contains different type of hydrocarbon fuels. A quantitative risk assessment is carried out on a selected tank farm in Jaipur, India, with particular attention given to both the consequence modeling and the overall risk assessment using PHAST Software. Various designs of tank layouts are examined taking into consideration several issues of plant operations and maintenance. In all stages of the work, standard guidelines specified by the industry are considered and recommendations are substantiated with simulation results and risk quantification.

New Stability Analysis for Neural Networks with Time-Varying Delays

This paper studies the problem of asymptotically stability for neural networks with time-varying delays.By establishing a suitable Lyapunov-Krasovskii function and several novel sufficient conditions are obtained to guarantee the asymptotically stability of the considered system. Finally,two numerical examples are given to illustrate the effectiveness of the proposed main results.

Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses

We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.

Effects of Reversible Watermarking on Iris Recognition Performance

Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance ofinvestigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.

Beyond Possibilities: Re- Reading Republican Ankara

This paper aims to expose the effects of the ideological program of Turkish Republic on city planning, through the first plan of Ankara. As the new capital, Ankara was planned to be the ‘showcase’ of modern Turkey. It was to represent all new ideologies and the country’s cultural similarities with the west. At the same time it was to underline the national identity and independence of Turkish republic. To this end, a new plan for the capital was designed by German city planner Carl Christopher Lörcher. Diametrically opposed with the existing fabric of the city, this plan was built on the basis of papers and plans, on ideological aims. On the contrary, this paper argues that the city is a machine of possibilities, rather than a clear, materialized system.

Probiotic Properties of Lactic Acid Bacteria Isolated from Fermented Food

The objectives of this study were to isolate LAB from various sources, dietary supplement, Thai traditional fermented food, and freshwater fish and to characterize their potential as probiotic cultures. Out of 1,558 isolates, 730 were identified as LAB based on isolation on MRS agar supplemented with a bromocresol purple indicator&CaCO3 and Gram-positive, catalase- and oxidase-negative characteristics. Eight isolates showed the potential probiotic properties including tolerance to acid, bile salt & heat, proteolytic, amylolytic & lipolytic activities and oxalate-degrading capability. They all showed the antimicrobial activity against some Gram-negative and Gram-positive pathogenic bacteria. Based on 16S rDNA sequence analysis, they were identified as Enterococcus faecalis BT2 & MG30, Leconostoc mesenteroides SW64 and Pediococcus pentosaceous BD33, CF32, NP6, PS34 & SW5. The health beneficial effects and food safety will be further investigated and developed as a probiotic or protective culture used in Nile tilapia belly flap meat fermentation.

Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste

Due to a high ethanol demand, the approach for  effective ethanol production is important and has been developed  rapidly worldwide. Several agricultural wastes are highly  abundant in celluloses and the effective cellulase enzymes do exist  widely among microorganisms. Accordingly, the cellulose  degradation using microbial cellulase to produce a low-cost substrate  for ethanol production has attracted more attention. In this  study, the cellulase producing bacterial strain has been isolated  from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulase activity. The optimal temperature for its growth and  cellulase production is 37°C. The optimal temperature of bacterial  cellulase activity is 60°C. The cellulase enzyme from  Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36h. showed highest cellulase activity at 120U/mL when  grown in LB medium containing 2% (w/v). The capability of  Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulase activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production.   

Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2

Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production.