Uniform Overlapped Multi-Carrier PWM for a Six-Level Diode Clamped Inverter

Multi-level voltage source inverters offer several advantages such as; derivation of a refined output voltage with reduced total harmonic distortion (THD), reduction of voltage ratings of the power semiconductor switching devices and also the reduced electro-magnetic-interference problems etc. In this paper, new carrier-overlapped phase-disposition or sub-harmonic sinusoidal pulse width modulation (CO-PD-SPWM) and also the carrieroverlapped phase-disposition space vector modulation (CO-PDSVPWM) schemes for a six-level diode-clamped inverter topology are proposed. The principle of the proposed PWM schemes is similar to the conventional PD-PWM with a little deviation from it in the sense that the triangular carriers are all overlapped. The overlapping of the triangular carriers on one hand results in an increased number of switchings, on the other hand this facilitates an improved spectral performance of the output voltage. It is demonstrated through simulation studies that the six-level diode-clamped inverter with the use of CO-PD-SPWM and CO-PD-SVPWM proposed in this paper is capable of generating multiple levels in its output voltage. The advantages of the proposed PWM schemes can be derived to benefit, especially at lower modulation indices of the inverter and hence this aspect of the proposed PWM schemes can be well exploited in high power applications requiring low speeds of operation of the drive.

A Development of the Multiple Intelligences Measurement of Elementary Students

This research aims at development of the Multiple Intelligences Measurement of Elementary Students. The structural accuracy test and normality establishment are based on the Multiple Intelligences Theory of Gardner. This theory consists of eight aspects namely linguistics, logic and mathematics, visual-spatial relations, body and movement, music, human relations, self-realization/selfunderstanding and nature. The sample used in this research consists of elementary school students (aged between 5-11 years). The size of the sample group was determined by Yamane Table. The group has 2,504 students. Multistage Sampling was used. Basic statistical analysis and construct validity testing were done using confirmatory factor analysis. The research can be summarized as follows; 1. Multiple Intelligences Measurement consisting of 120 items is content-accurate. Internal consistent reliability according to the method of Kuder-Richardson of the whole Multiple Intelligences Measurement equals .91. The difficulty of the measurement test is between .39-.83. Discrimination is between .21-.85. 2). The Multiple Intelligences Measurement has construct validity in a good range, that is 8 components and all 120 test items have statistical significance level at .01. Chi-square value equals 4357.7; p=.00 at the degree of freedom of 244 and Goodness of Fit Index equals 1.00. Adjusted Goodness of Fit Index equals .92. Comparative Fit Index (CFI) equals .68. Root Mean Squared Residual (RMR) equals 0.064 and Root Mean Square Error of Approximation equals 0.82. 3). The normality of the Multiple Intelligences Measurement is categorized into 3 levels. Those with high intelligence are those with percentiles of more than 78. Those with moderate/medium intelligence are those with percentiles between 24 and 77.9. Those with low intelligence are those with percentiles from 23.9 downwards.

Microalbuminuria in Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome

Human immunodeficiency virus infection and acquired immunodeficiency syndrome is a global pandemic with cases reporting from virtually every country and continues to be a common infection in developing country like India. Microalbuminuria is a manifestation of human immunodeficiency virus associated nephropathy. Therefore, microalbuminuria may be an early marker of human immunodeficiency virus associated nephropathy, and screening for its presence may be beneficial. A strikingly high prevalence of microalbuminuria among human immunodeficiency virus infected patients has been described in various studies. Risk factors for clinically significant proteinuria include African - American race, higher human immunodeficiency virus ribonucleic acid level and lower CD4 lymphocyte count. The cardiovascular risk factors of increased systolic blood pressure and increase fasting blood sugar level are strongly associated with microalbuminuria in human immunodeficiency virus patient. These results suggest that microalbuminuria may be a sign of current endothelial dysfunction and micro-vascular disease and there is substantial risk of future cardiovascular disease events. Positive contributing factors include early kidney disease such as human immunodeficiency virus associated nephropathy, a marker of end organ damage related to co morbidities of diabetes or hypertension, or more diffuse endothelial cells dysfunction. Nevertheless after adjustment for non human immunodeficiency virus factors, human immunodeficiency virus itself is a major risk factor. The presence of human immunodeficiency virus infection is independent risk to develop microalbuminuria in human immunodeficiency virus patient. Cardiovascular risk factors appeared to be stronger predictors of microalbuminuria than markers of human immunodeficiency virus severity person with human immunodeficiency virus infection and microalbuminuria therefore appear to potentially bear the burden of two separate damage related to known vascular end organ damage related to know vascular risk factors, and human immunodeficiency virus specific processes such as the direct viral infection of kidney cells.The higher prevalence of microalbuminuria among the human immunodeficiency virus infected could be harbinger of future increased risks of both kidney and cardiovascular disease. Further study defining the prognostic significance of microalbuminuria among human immunodeficiency virus infected persons will be essential. Microalbuminuria seems to be a predictor of cardiovascular disease in diabetic and non diabetic subjects, hence it can also be used for early detection of micro vascular disease in human immunodeficiency virus positive patients, thus can help to diagnose the disease at the earliest.

Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods

The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.

Optimal Capacitor Placement in Distribution Feeders

Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.

Turbo-Coded Mobile Terrestrial Communication Systems in Urban and Suburban Areas for Wireless Multimedia Applications

With the rapid popularization of internet services, it is apparent that the next generation terrestrial communication systems must be capable of supporting various applications like voice, video, and data. This paper presents the performance evaluation of turbo- coded mobile terrestrial communication systems, which are capable of providing high quality services for delay sensitive (voice or video) and delay tolerant (text transmission) multimedia applications in urban and suburban areas. Different types of multimedia information require different service qualities, which are generally expressed in terms of a maximum acceptable bit-error-rate (BER) and maximum tolerable latency. The breakthrough discovery of turbo codes allows us to significantly reduce the probability of bit errors with feasible latency. In a turbo-coded system, a trade-off between latency and BER results from the choice of convolutional component codes, interleaver type and size, decoding algorithm, and the number of decoding iterations. This trade-off can be exploited for multimedia applications by using optimal and suboptimal performance parameter amalgamations to achieve different service qualities. The results are therefore proposing an adaptive framework for turbo-coded wireless multimedia communications which incorporate a set of performance parameters that achieve an appropriate set of service qualities, depending on the application's requirements.

Dynamic-Stochastic Influence Diagrams: Integrating Time-Slices IDs and Discrete Event Systems Modeling

The Influence Diagrams (IDs) is a kind of Probabilistic Belief Networks for graphic modeling. The usage of IDs can improve the communication among field experts, modelers, and decision makers, by showing the issue frame discussed from a high-level point of view. This paper enhances the Time-Sliced Influence Diagrams (TSIDs, or called Dynamic IDs) based formalism from a Discrete Event Systems Modeling and Simulation (DES M&S) perspective, for Exploring Analysis (EA) modeling. The enhancements enable a modeler to specify times occurred of endogenous events dynamically with stochastic sampling as model running and to describe the inter- influences among them with variable nodes in a dynamic situation that the existing TSIDs fails to capture. The new class of model is named Dynamic-Stochastic Influence Diagrams (DSIDs). The paper includes a description of the modeling formalism and the hiberarchy simulators implementing its simulation algorithm, and shows a case study to illustrate its enhancements.

Developing ESL Students' Writing

Some of the students' problems in writing skill stem from inadequate preparation for the writing assignment. Students should be taught how to write well when they arrive in language classes. Having selected a topic, the students examine and explore the theme from as large a variety of viewpoints as their background and imagination make possible. Another strategy is that the students prepare an Outline before writing the paper. The comparison between the two mentioned thought provoking techniques was carried out between the two class groups –students of Islamic Azad University of Dezful who were studying “Writing 2" as their main course. Each class group was assigned to write five compositions separately in different periods of time. Then a t-test for each pair of exams between the two class groups showed that the t-observed in each pair was more than the t-critical. Consequently, the first hypothesis which states those who utilize Brainstorming as a thought provoking technique in prewriting phase are more successful than those who outline the papers before writing was verified.

A Soft Systems Methodology Perspective on Data Warehousing Education Improvement

This paper demonstrates how the soft systems methodology can be used to improve the delivery of a module in data warehousing for fourth year information technology students. Graduates in information technology needs to have academic skills but also needs to have good practical skills to meet the skills requirements of the information technology industry. In developing and improving current data warehousing education modules one has to find a balance in meeting the expectations of various role players such as the students themselves, industry and academia. The soft systems methodology, developed by Peter Checkland, provides a methodology for facilitating problem understanding from different world views. In this paper it is demonstrated how the soft systems methodology can be used to plan the improvement of data warehousing education for fourth year information technology students.

New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation

In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.

Fingerprint Compression Using Multiwavelets

Large volumes of fingerprints are collected and stored every day in a wide range of applications, including forensics, access control etc. It is evident from the database of Federal Bureau of Investigation (FBI) which contains more than 70 million finger prints. Compression of this database is very important because of this high Volume. The performance of existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform (DCT) scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties which are needed for better performance in compression. New class of wavelets called 'Multiwavelets' which posses more than one scaling filters overcomes this problem. The objective of this paper is to develop an efficient compression scheme and to obtain better quality and higher compression ratio through multiwavelet transform and embedded coding of multiwavelet coefficients through Set Partitioning In Hierarchical Trees algorithm (SPIHT) algorithm. A comparison of the best known multiwavelets is made to the best known scalar wavelets. Both quantitative and qualitative measures of performance are examined for Fingerprints.

Extraction of Data from Web Pages: A Vision Based Approach

With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.

Self-efficacy, Self-reliance, and Motivation inan Asynchronous Learning Environment

Self-efficacy, self-reliance, and motivation were examined in a quasi-experimental study with 178 sophomore university students. Participants used an interactive cardiovascular anatomy and physiology CD-ROM, and completed a 15-item questionnaire. Reliability of the questionnaire was established using Cronbach-s alpha. Post-tests and course grades were examined using a t-test, demonstrating no significance. Results of an item-to-item analysis of the questionnaire showed overall satisfaction with the teaching methodology and varied results for self-efficacy, selfreliance, and motivation. Kendall-s Tau was calculated for all items in the questionnaire.

Bioengineering for Customized Orthodontic Applications- Implant, Bracket and Dental Vibrator

To understand complex living system an effort has made by mechanical engineers and dentists to deliver prompt products and services to patients concerned about their aesthetic look. Since two decades various bracket systems have designed involving techniques like milling, injection molding which are technically not flexible for the customized dental product development. The aim of this paper to design, develop a customized system which is economical and mainly emphasizes the expertise design and integration of engineering and dental fields. A custom made selfadjustable lingual bracket and customized implants are designed and developed using computer aided design (CAD) and rapid prototyping technology (RPT) to improve the smiles and to overcome the difficulties associated with conventional ones. Lengthy orthodontic treatment usually not accepted by the patients because the patient compliance is lost. Patient-s compliance can be improved by facilitating faster tooth movements by designing a localized dental vibrator using advanced engineering principles.

Critical Points of Prefabricated Reinforced Concrete Wall Systems of Multi-storey Buildings

With respect to the dissipation of energy through plastic deformation of joints of prefabricated wall units, the paper points out the principal importance of efficient reinforcement of the prefabricated system at its joints. The method, quality and amount of reinforcement are essential for reaching the necessary degree of joint ductility. The paper presents partial results of experimental research of vertical joints of prefabricated units exposed to monotonously rising loading and repetitive shear force and formulates a conclusion that the limit state of the structure as a whole is preceded by the disintegration of joints, or that the structure tends to pass from linearly elastic behaviour to non-linearly elastic to plastic behaviour by exceeding the proportional elastic limit in joints.Experimental verification on a model of a 7-storey prefabricated structure revealed weak points in its load-bearing systems, mainly at places of critical points around openings situated in close proximity to vertical joints of mutually perpendicularly oriented walls.

A Sociocybernetics Data Analysis Using Causality in Tourism Networks

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

The Status Info Processing and Keeping System for Production Equipment

With the globalized production and logistics environment, the need for reducing the product development interval and lead time, having a faster response to orders, conforming to quality standards, fair tracking, and boosting information exchanging activities with customers and partners, and coping with changes in the management environment, manufacturers are in dire need of an information management system in their manufacturing environments. There are lots of information systems that have been designed to manage the condition or operation of equipment in the field but existing systems have a decentralized architecture, which is not unified. Also, these systems cannot effectively handle the status data extraction process upon encountering a problem related to protocols or changes in the equipment or the setting. In this regard, this paper will introduce a system for processing and saving the status info of production equipment, which uses standard representation formats, to enable flexible responses to and support for variables in the field equipment. This system can be used for a variety of manufacturing and equipment settings and is capable of interacting with higher-tier systems such as MES.

Web Based Remote Access Microcontroller Laboratory

This paper presents a web based remote access microcontroller laboratory. Because of accelerated development in electronics and computer technologies, microcontroller-based devices and appliances are found in all aspects of our daily life. Before the implementation of remote access microcontroller laboratory an experiment set is developed by teaching staff for training microcontrollers. Requirement of technical teaching and industrial applications are considered when experiment set is designed. Students can make the experiments by connecting to the experiment set which is connected to the computer that set as the web server. The students can program the microcontroller, can control digital and analog inputs and can observe experiment. Laboratory experiment web page can be accessed via www.elab.aku.edu.tr address.

Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network

End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.

Orthogonal Functions Approach to LQG Control

In this paper a unified approach via block-pulse functions (BPFs) or shifted Legendre polynomials (SLPs) is presented to solve the linear-quadratic-Gaussian (LQG) control problem. Also a recursive algorithm is proposed to solve the above problem via BPFs. By using the elegant operational properties of orthogonal functions (BPFs or SLPs) these computationally attractive algorithms are developed. To demonstrate the validity of the proposed approaches a numerical example is included.