Biosignal Measurement System Based On Ultra-Wide Band Human Body Communication

A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strongsecurity measures since it does not use wireless network.Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.

Influence of Metakaolin on the Performance of Mortars and Concretes

The use of additions in cement in manufacturing, mortar and concrete offers economic and ecological advantages. Cements with additions such as limestone, slag and natural pouzzolana are produced in cement factories in Algeria. Several studies analyzed the effect of these additions on the physical and mechanical properties as well as the durability of concrete. However, few studies were conducted on the effect of local metakaolin on mechanical properties and durability of concrete. The main purpose of this paper is to analyze the performance of mortar and concrete with local metakaolin. The preparation of the metakaolin was carried out by calcination of kaolin at a temperature of 850 °C for a period of 3 hours. The experimental results have shown that the rates of substitutions of 10 and 15% metakaolin increases the compressive strength and flexural strength at both early age and long term. The durability and the permeability were also improved by reducing the coefficient of sorptivity.

Effect of Leadership Approach to Organizational Commitment: A Study in Transportation Sector

Employees commitments of vision and mission of organization is effected due to manager’s executes by approach of leadership The leaders who have attributions like vision, confidence and correctitude, sharing and participation, creativeness, progressive learning –improvement and responsibility are effective to increase organizational commitment if they are sensitive to expectation and requirement of employees in an organization. Studies about organizational commitment appear results that employees who have strong organizational commitment have the most contribution. In this study, “Leadership” and “Organizational Commitment” conduct surveys to 31 employees of Ahmet Özdemir Nak. Tic. San. A.Ş. which has operations in road and railway transportation sector. It is analyzed the effects of leadership approach to organizational commitment deals with result of survey.

The Role of the Indigenous Languages in Policy Planning and Implementation: A Sociolinguistic Appraisal of the National Rebranding Programme of Nigeria

The nexus between language and culture is so intertwined and very significant that language is largely seen as a vehicle for cultural transmission. Culture itself refers to the aggregate belief system of a people, embellishing its corporate national image or brand. If we conceive national rebranding as a campaign to rekindle the patriotic flame in the consciousness of a people towards its sociocultural imperatives and values, then, Nigerian indigenous linguistic flame has not been ignited. Consequently, the paper contends that the current national rebranding policy remains a myth in the confines of the elitists' intellectual squabble. It however recommends that the use of our indigenous languages should be supported by adequate legislation and also propagated by Nollywood in order to revamp and sustain the people’s interest in their local languages. Finally, the use of the indigenous Nigerian languages demonstrates patriotism, an important ingredient for actualizing a genuine national rebranding.

Structural Analysis of Lignins from Different Sources

Five lignin samples were fractionated with Acetone/Water mixtures and the obtained fractions were subjected to extensive structural characterization, including Fourier Transform Infrared (FT-IR), Gel permeation Chromatography (GPC) and Phosphorus-31 NMR spectroscopy (31P-NMR). The results showed that for all studied lignins the solubility increases with the increment of the acetone concentration. Wheat straw lignin has the highest solubility in 90/10 (v/v) Acetone/Water mixture, 400 mg lignin being dissolved in 1 mL mixture. The weight average molecular weight of the obtained fractions increased with the increment of acetone concentration and thus with solubility. 31P-NMR analysis based on lignin modification by reactive phospholane into phosphitylated compounds was used to differentiate and quantify the different types of OH groups (aromatic, aliphatic, and carboxylic) found in the fractions obtained with 70/30 (v/v) Acetone/Water mixture.

Asynchronous Parallel Distributed Genetic Algorithm with Elite Migration

In most of the popular implementation of Parallel GAs the whole population is divided into a set of subpopulations, each subpopulation executes GA independently and some individuals are migrated at fixed intervals on a ring topology. In these studies, the migrations usually occur 'synchronously' among subpopulations. Therefore, CPUs are not used efficiently and the communication do not occur efficiently either. A few studies tried asynchronous migration but it is hard to implement and setting proper parameter values is difficult. The aim of our research is to develop a migration method which is easy to implement, which is easy to set parameter values, and which reduces communication traffic. In this paper, we propose a traffic reduction method for the Asynchronous Parallel Distributed GA by migration of elites only. This is a Server-Client model. Every client executes GA on a subpopulation and sends an elite information to the server. The server manages the elite information of each client and the migrations occur according to the evolution of sub-population in a client. This facilitates the reduction in communication traffic. To evaluate our proposed model, we apply it to many function optimization problems. We confirm that our proposed method performs as well as current methods, the communication traffic is less, and setting of the parameters are much easier.

Active Learning Strategies and Academic Achievement among Some Psychology Undergraduates in Barbados

This study investigated the relationships between the active learning strategies (discussion, video clips, game show, role– play, five minute paper, clarification pauses, and small group) and academic achievement among a sample of 158 undergraduate psychology students in The University of the West Indies (UWI), Barbados. Results revealed statistically significant positive correlations between active learning strategies and students’ academic achievement; so also the active learning strategies contributed 22% (Rsq=0.222) to the variance being accounted for in academic achievement and this was found to be statistically significant (F(7,150) = 6.12, p < .05). Additionally, group work emerged as the best active learning strategy and had the highest correlation with the students’ academic achievement. These results were discussed in the light of the importance of the active learning strategies promoting academic achievement among the university students.

Modal Propagation Properties of Elliptical Core Optical Fibers Considering Stress-Optic Effects

The effect of thermally induced stress on the modal properties of highly elliptical core optical fibers is studied in this work using a finite element method. The stress analysis is carried out and anisotropic refractive index change is calculated using both the conventional plane strain approximation and the generalized plane strain approach. After considering the stress optical effect, the modal analysis of the fiber is performed to obtain the solutions of fundamental and higher order modes. The modal effective index, modal birefringence, group effective index, group birefringence, and dispersion of different modes of the fiber are presented. For propagation properties, it can be seen that the results depend much on the approach of stress analysis.

Real-time 3D Feature Extraction without Explicit 3D Object Reconstruction

For the communication between human and computer in an interactive computing environment, the gesture recognition is studied vigorously. Therefore, a lot of studies have proposed efficient methods about the recognition algorithm using 2D camera captured images. However, there is a limitation to these methods, such as the extracted features cannot fully represent the object in real world. Although many studies used 3D features instead of 2D features for more accurate gesture recognition, the problem, such as the processing time to generate 3D objects, is still unsolved in related researches. Therefore we propose a method to extract the 3D features combined with the 3D object reconstruction. This method uses the modified GPU-based visual hull generation algorithm which disables unnecessary processes, such as the texture calculation to generate three kinds of 3D projection maps as the 3D feature: a nearest boundary, a farthest boundary, and a thickness of the object projected on the base-plane. In the section of experimental results, we present results of proposed method on eight human postures: T shape, both hands up, right hand up, left hand up, hands front, stand, sit and bend, and compare the computational time of the proposed method with that of the previous methods.

Quantifying the Stability of Software Systems via Simulation in Dependency Networks

The stability of a software system is one of the most important quality attributes affecting the maintenance effort. Many techniques have been proposed to support the analysis of software stability at the architecture, file, and class level of software systems, but little effort has been made for that at the feature (i.e., method and attribute) level. And the assumptions the existing techniques based on always do not meet the practice to a certain degree. Considering that, in this paper, we present a novel metric, Stability of Software (SoS), to measure the stability of object-oriented software systems by software change propagation analysis using a simulation way in software dependency networks at feature level. The approach is evaluated by case studies on eight open source Java programs using different software structures (one employs design patterns versus one does not) for the same object-oriented program. The results of the case studies validate the effectiveness of the proposed metric. The approach has been fully automated by a tool written in Java.

Characterization of Fabricated A 384.1-MgO Based Metal Matrix Composite and Optimization of Tensile Strength using Taguchi Techniques

The present work consecutively on synthesis and characterization of composites, Al/Al alloy A 384.1 as matrix in which the main ingredient as Al/Al-5% MgO alloy based metal matrix composite. As practical implications the low cost processing route for the fabrication of Al alloy A 384.1 and operational difficulties of presently available manufacturing processes based in liquid manipulation methods. As all new developments, complete understanding of the influence of processing variables upon the final quality of the product. And the composite is applied comprehensively to the acquaintance for achieving superiority of information concerning the specific heat measurement of a material through the aid of thermographs. Products are evaluated concerning relative particle size and mechanical behavior under tensile strength. Furthermore, Taguchi technique was employed to examine the experimental optimum results are achieved, owing to effectiveness of this approach.

Optical Reflectance of Pure and Doped Tin Oxide: From Thin Films to Poly-Crystalline Silicon/Thin Film Device

Films of pure tin oxide SnO2 and in presence of antimony atoms (SnO2-Sb) deposited onto glass substrates have shown a sufficiently high energy gap to be transparent in the visible region, a high electrical mobility and a carrier concentration which displays a good electrical conductivity [1]. In this work, the effects of polycrystalline silicon substrate on the optical properties of pure and Sb doped tin oxide is investigated. We used the APCVD (atmospheric pressure chemical vapour deposition) technique, which is a low-cost and simple technique, under nitrogen ambient, for growing this material. A series of SnO2 and SnO2-Sb have been deposited onto polycrystalline silicon substrates with different contents of antimony atoms at the same conditions of deposition (substrate temperature, flow oxygen, duration and nitrogen atmosphere of the reactor). The effect of the substrate in terms of morphology and nonlinear optical properties, mainly the reflectance, was studied. The reflectance intensity of the device, compared to the reflectance of tin oxide films deposited directly on glass substrate, is clearly reduced on the overall wavelength range. It is obvious that the roughness of the poly-c silicon plays an important role by improving the reflectance and hence the optical parameters. A clear shift in the minimum of the reflectance upon doping level is observed. This minimum corresponds to strong free carrier absorption, resulting in different plasma frequency. This effect is followed by an increase in the reflectance depending of the antimony doping. Applying the extended Drude theory to the combining optical and electrical obtained results these effects are discussed.

Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous methanol is used with 15% water content in HCCI engine and its performance and emission behavior is documented. The auto-ignition of Methanol is enabled by DME. The quantity of DME varies with respect to the load. In this study, the experiments are conducted independently and the effect of the hydrous methanol on the engine operating limit, heat release rate and exhaust emissions at different load conditions are investigated. The investigation also proves that the Hydrous Methanol with DME operation reduces the oxides of Nitrogen and smoke to an extreme low level which is not possible by the direct injection CI engine. Therefore, it is beneficial to use hydrous methanol-DME HCCI mode while using hydrous methanol in internal Combustion Engines.

Changes of in vitro Cytokine Production induced by δ-Lactams

The aim of this work was to study the in vitro effects of δ-lactam 1 and its 4-chlorophenyl derivative 2, on the proliferative responses of human lymphocytes and Th1 and Th2 cytokine secretion. The possible protective role of vitamin E on intracellular stress oxidative induced by these compounds was also investigated. Peripheral blood lymphocytes were isolated using differential centrifugation on a density gradient of Histopaque. They were cultured with mitogen concanavalin A, vitamin E (10 μM) and with different concentrations of the compounds 1 and 2 (0.1 to 10 μM). Proliferation (MTT assay), IL-2, INFγ and IL-4 (Elisa kits), intracellular superoxide anion were determined. 1 and 2 were immunostimulant and increased cytokine secretion with a shift away from Th1 response to Th2. These properties were however accompanied by an increase in intracellular oxidative stress. The presence of vitamin E exhibited protective effects by reducing δ- lactam-induced superoxide anion generation in lymphocytes.

Non-reflection Boundary Conditions for Numerical Simulation of Supersonic Flow

This article presents the boundary conditions for the problem of turbulent supersonic gas flow in a plane channel with a perpendicular injection jets. The non-reflection boundary conditions for direct modeling of compressible viscous gases are studied. A formulation using the NSCBC (Navier- Stocks characteristic boundary conditions) through boundaries is derived for the subsonic inflow and subsonic non-reflection outflow situations. Verification of the constructed algorithm of boundary conditions is carried out by solving a test problem of perpendicular sound of jets injection into a supersonic gas flow in a plane channel.

Islam and Values of Kazakh Culture

Unlike Christianity and Buddhism, Islam, being one of the three universal world religions, actively penetrates into people-s everyday life. The main reason for this is that in Islam the religion and ideology, philosophy, religious organizations and state bodies are closely interrelated. In order to analyze the state of being of interrelations of religion and civil society in Kazakhstan, it is necessary to study Islam and its relations with spiritual culture of the society. According to the Constitution of the Republic of Kazakhstan the religion is separated from the state, i.e. each performs its own function without interfering into each other-s affairs. The right of the citizens of our republic to freedom of thinking and faith is based on the Constitution of the RK, Civil Code, Law “On freedom of faith and religious unions in the Republic of Kazakhstan". Legislatively secured separation of the mosque and church from the state does not mean that religion has no influence on the latter. The state, consisting of citizens with their own beliefs, including religious ones, cannot be isolated from the influence of religion. Nowadays it is commonly accepted that it is not possible to understand and forecast key social processes without taking into account the religious factor.

A Comparative Study of PV Models in Matlab/Simulink

Solar energy has a major role in renewable energy resources. Solar Cell as a basement of solar system has attracted lots of research. To conduct a study about solar energy system, an authenticated model is required. Diode base PV models are widely used by researchers. These models are classified based on the number of diodes used in them. Single and two-diode models are well studied. Single-diode models may have two, three or four elements. In this study, these solar cell models are examined and the simulation results are compared to each other. All PV models are re-designed in the Matlab/Simulink software and they examined by certain test conditions and parameters. This paper provides comparative studies of these models and it tries to compare the simulation results with manufacturer-s data sheet to investigate model validity and accuracy. The results show a four- element single-diode model is accurate and has moderate complexity in contrast to the two-diode model with higher complexity and accuracy

Intelligent Path Planning for Rescue Robot

In this paper, a heuristic method for simultaneous rescue robot path-planning and mission scheduling is introduced based on project management techniques, multi criteria decision making and artificial potential fields path-planning. Groups of injured people are trapped in a disastrous situation. These people are categorized into several groups based on the severity of their situation. A rescue robot, whose ultimate objective is reaching injured groups and providing preliminary aid for them through a path with minimum risk, has to perform certain tasks on its way towards targets before the arrival of rescue team. A decision value is assigned to each target based on the whole degree of satisfaction of the criteria and duties of the robot toward the target and the importance of rescuing each target based on their category and the number of injured people. The resulted decision value defines the strength of the attractive potential field of each target. Dangerous environmental parameters are defined as obstacles whose risk determines the strength of the repulsive potential field of each obstacle. Moreover, negative and positive energies are assigned to the targets and obstacles, which are variable with respects to the factors involved. The simulation results show that the generated path for two cases studies with certain differences in environmental conditions and other risk factors differ considerably.

Elastic Strain-Concentration Factor of Cylindrical Bars with Circumferential Flat-Bottom Groove under Static Tension

Using finite element method (FEM), the elastic new strain-concentration factor (SNCF) of cylindrical bars with circumferential flat-bottom groove is studied. This new SNCF has been defined under triaxial stress state. The employed specimens have constant groove depth with net section and gross diameters of 10.0 and 16.7 mm, respectively. The length of flatness ao has been varied form 0.0 ~12.5 mm to study the elastic SNCF of this type of geometrical irregularities. The results that the elastic new SNCF rapidly drops from its elastic value of the groove with ao = 0.0, i.e. circumferential U-notch, and reaches minimum value at ao = 2 mm. After that the elastic new SNCF becomes nearly constant with increasing flatness length (ao). The value of tensile load at yielding at the groove root increases with increasing ao. The current results show that severity of the notch decreases with increasing flatness length ao.

Using Reverse Osmosis Membrane for Chromium Removal from Aqueous Solution

In this paper, removal of chromium(VI) from aqueous solution has been researched using reverse osmosis. The influence of transmembrane pressure and feed concentration on permeate flux, water recovery, permeate concentration, and salt rejection was studied. The results showed that according to the variation of transmembrane pressure and feed concentration, the permeate flux and salt rejection were in the range 19.17 to 58.75 l/m2.min and 99.51 to 99.8 %, respectively. The highest permeate flux, 58.75 l/m2.min, and water recovery, 42.47 %, were obtained in the highest pressure and the lowest feed concentration. On the other hand, the lowest permeate concentration, 0.01 mg/l, and the highest salt rejection, 99.8 %, were obtained in the highest pressure and the lowest feed concentration.