The Impact of Protein Content on Athletes’ Body Composition

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

The Mouth and Gastrointestinal Tract of the African Lung Fish Protopterus annectens in River Niger at Agenebode, Nigeria

The West African Lung fishes are fishes rich in protein and serve as an important source of food supply for man. The kind of food ingested by this group of fishes is dependent on the alimentary canal as well as the fish’s digestive processes which provide suitable modifications for maximum utilization of food taken. A study of the alimentary canal of P. annectens will expose the best information on the anatomy and histology of the fish. Samples of P. annectens were dissected to reveal the liver, pancreas and entire gut wall. Digital pictures of the mouth, jaws and the Gastrointestinal Tract (GIT) were taken. The entire gut was identified, sectioned and micro graphed. P. annectens was observed to possess a terminal mouth that opens up to 10% of its total body length, an adaptive feature to enable the fish to swallow the whole of its pry. Its dentition is made up of incisors- scissor-like teeth which also help to firmly grip, seize and tear through the skin of prey before swallowing. A short, straight and longitudinal GIT was observed in P. annectens which is known to be common feature in lungfishes, though it is thought to be a primitive characteristic similar to the lamprey. The oesophagus is short and distensible similar to other predatory and carnivorous species. Food is temporarily stored in the stomach before it is passed down into the intestine. A pyloric aperture is seen at the end of the double folded pyloric valve which leads into an intestine that makes up 75% of the whole GIT. The intestine begins at the posterior end of the pyloric aperture and winds down in six coils through the whole length intestine and ends at the cloaca. From this study it is concluded that P. annectens possess a composite GIT with organs similar to other lung fishes; it is a detritor with carnivorous abilities.

Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Implementation of a Serializer to Represent PHP Objects in the Extensible Markup Language

Interoperability in distributed systems is an important feature that refers to the communication of two applications written in different programming languages. This paper presents a serializer and a de-serializer of PHP objects to and from XML, which is an independent library written in the PHP programming language. The XML generated by this serializer is independent of the programming language, and can be used by other existing Web Objects in XML (WOX) serializers and de-serializers, which allow interoperability with other object-oriented programming languages.

Using Textual Pre-Processing and Text Mining to Create Semantic Links

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Limits Problem Solving in Engineering Careers: Competences and Errors

In this article, the performance and errors are featured and analysed in the limit problems solving of a real-valued function, in correspondence to competency-based education in engineering careers, in the south of Chile. The methodological component is contextualised in a qualitative research, with a descriptive and explorative design, with elaboration, content validation and application of quantitative instruments, consisting of two parallel forms of open answer tests, based on limit application problems. The mathematical competences and errors made by students from five engineering careers from a public University are identified and characterized. Results show better performance only to solve routine-context problem-solving competence, thus they are oriented towards a rational solution or they use a suitable problem-solving method, achieving the correct solution. Regarding errors, most of them are related to techniques and the incorrect use of theorems and definitions of real-valued function limits of real variable.

Impact of Foliar Application of Zinc on Micro and Macro Elements Distribution in Phyllanthus amarus

The present study was carried out to investigate the interaction of foliar applied zinc with other elements in Phyllanthus amarus plants. The plant samples for our experiment were collected from Lam Dong province, Vietnam. Seven suspension solutions of nanosized zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with different Zn concentration were used. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe, Mn) and macro (Ca, Mg, P and K) nutrients in plant roots, and stems and leaves were determined. It was concluded that the zinc content of plant roots varies narrowly, with no significant impact of ZnHN fertilization. The same trend can be seen in the content of Cu, Mn, and macronutrients. The zinc content of plant stems and leaves varies within wide limits, with the significant impact of ZnHN fertilization. The trends in the content of Cu, Mn, and macronutrients are kept the same as in the root, whereas the iron trends to increase its content at increasing the zinc content.

Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive

Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.

An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

An Improved Total Variation Regularization Method for Denoising Magnetocardiography

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Vr-GIS and Ar-GIS In Education: A Case Study

ICT tools and platforms endorse more and more educational process. Many models and techniques for people to be educated and trained about specific topics and skills do exist, as classroom lectures with textbooks, computers, handheld devices and others. The choice to what extent ICT is applied within learning contexts is related to personal access to technologies as well as to the infrastructure surrounding environment. Among recent techniques, the adoption of Virtual Reality (VR) and Augmented Reality (AR) provides significant impulse in fully engaging users senses. In this paper, an application of AR/VR within Geographic Information Systems (GIS) context is presented. It aims to provide immersive environment experiences for educational and training purposes (e.g. for civil protection personnel), useful especially for situations where real scenarios are not easily accessible by humans. First acknowledgments are promising for building an effective tool that helps civil protection personnel training with risk reduction.

Valorization of the Algerian Plaster and Dune Sand in the Building Sector

The need for thermal comfort of buildings, with the aim of saving energy, has always generated a big interest during the development of methods, to improve the mode of construction. In the present paper, which is concerned by the valorization of locally abundant materials, mixtures of plaster and dune sand have been studied. To point out the thermal performances of these mixtures, a comparative study has been established between this product and the two materials most commonly used in construction, the concrete and hollow brick. The results showed that optimal mixture is made with 1/3 plaster and 2/3 dune sand. This mortar achieved significant increases in the mechanical strengths, which allow it to be used as a carrier element for buildings, of up to two levels. The element obtained offers an acceptable thermal insulation, with a decrease the outer-wall construction thickness.

Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Factors Influencing Intention to Engage in Long-term Care Services among Nursing Aide Trainees and the General Public

Rapid aging and depopulation could lead to serious problems, including workforce shortages and health expenditure costs. The current and predicted future LTC workforce shortages could be a real threat to Taiwan’s society. By means of comparison of data from 144 nursing aide trainees and 727 general public, the main purpose of the present study was to determine whether there were any notable differences between the two groups toward engaging in LTC services. Moreover, this study focused on recognizing the attributes of the general public who had the willingness to take LTC jobs but continue to ride the fence. A self-developed questionnaire was designed based on Ajzen’s Theory of Planned Behavior model. After conducting exploratory factor analysis (EFA) and reliability analysis, the questionnaire was a reliable and valid instrument for both nursing aide trainees and the general public. The main results were as follows: Firstly, nearly 70% of nursing aide trainees showed interest in LTC jobs. Most of them were middle-aged female (M = 46.85, SD = 9.31), had a high school diploma or lower, had unrelated work experience in healthcare, and were mostly unemployed. The most common reason for attending the LTC training program was to gain skills in a particular field. The second most common reason was to obtain the license. The third and fourth reasons were to be interested in caring for people and to increase income. The three major reasons that might push them to leave LTC jobs were physical exhaustion, payment is bad, and being looked down on. Secondly, the variables that best-predicted nursing aide trainees’ intention to engage in LTC services were having personal willingness, perceived behavior control, with high school diploma or lower, and supported from family and friends. Finally, only 11.80% of the general public reported having interest in LTC jobs (the disapproval rating was 50% for the general public). In comparison to nursing aide trainees who showed interest in LTC settings, 64.8% of the new workforce for LTC among the general public was male and had an associate degree, 54.8% had relevant healthcare experience, 67.1% was currently employed, and they were younger (M = 32.19, SD = 13.19) and unmarried (66.3%). Furthermore, the most commonly reason for the new workforce to engage in LTC jobs were to gain skills in a particular field. The second priority was to be interested in caring for people. The third and fourth most reasons were to give back to society and to increase income, respectively. The top five most commonly reasons for the new workforce to quitting LTC jobs were listed as follows: physical exhaustion, being looked down on, excessive working hours, payment is bad, and excessive job stress.

Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth

Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.  

Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Morphological and Electrical Characterization of Polyacrylonitrile Nanofibers Synthesized Using Electrospinning Method for Electrical Application

Electrospinning is the most widely utilized method to create nanofibers because of the direct setup, the capacity to mass-deliver consistent nanofibers from different polymers, and the ability to produce ultrathin fibers with controllable diameters. Smooth and much arranged ultrafine Polyacrylonitrile (PAN) nanofibers with diameters going from submicron to nanometer were delivered utilizing Electrospinning technique. PAN powder was used as a precursor to prepare the solution utilized as a part of this process. At the point when the electrostatic repulsion contradicted surface tension, a charged stream of polymer solution was shot out from the head of the spinneret and along these lines ultrathin nonwoven fibers were created. The effect of electrospinning parameter such as applied voltage, feed rate, concentration of polymer solution and tip to collector distance on the morphology of electrospun PAN nanofibers were investigated. The nanofibers were heat treated for carbonization to examine the changes in properties and composition to make for electrical application. Scanning Electron Microscopy (SEM) was performed before and after carbonization to study electrical conductivity and morphological characterization. The SEM images have shown the uniform fiber diameter and no beads formation. The average diameter of the PAN fiber observed 365nm and 280nm for flat plat and rotating drum collector respectively. The four probe strategy was utilized to inspect the electrical conductivity of the nanofibers and the electrical conductivity is significantly improved with increase in oxidation temperature exposed.

Discovering Semantic Links Between Synonyms, Hyponyms and Hypernyms

This proposal aims for semantic enrichment between glossaries using the Simple Knowledge Organization System (SKOS) vocabulary to discover synonyms, hyponyms and hyperonyms semiautomatically, in Brazilian Portuguese, generating new semantic relationships based on WordNet. To evaluate the quality of this proposed model, experiments were performed by the use of two sets containing new relations, being one generated automatically and the other manually mapped by the domain expert. The applied evaluation metrics were precision, recall, f-score, and confidence interval. The results obtained demonstrate that the applied method in the field of Oil Production and Extraction (E&P) is effective, which suggests that it can be used to improve the quality of terminological mappings. The procedure, although adding complexity in its elaboration, can be reproduced in others domains.