Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks

The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 17% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades can improve the thermal lag significantly (p >0.05) when compared to the SLVF façade.

Scheduling Method for Electric Heater in HEMS Considering User’s Comfort

Home Energy Management System (HEMS), which makes the residential consumers, contribute to the demand response is attracting attention in recent years. An aim of HEMS is to minimize their electricity cost by controlling the use of their appliances according to electricity price. The use of appliances in HEMS may be affected by some conditions such as external temperature and electricity price. Therefore, the user’s usage pattern of appliances should be modeled according to the external conditions, and the resultant usage pattern is related to the user’s comfortability on use of each appliances. This paper proposes a methodology to model the usage pattern based on the historical data with the copula function. Through copula function, the usage range of each appliance can be obtained and is able to satisfy the appropriate user’s comfort according to the external conditions for next day. Within the usage range, an optimal scheduling for appliances would be conducted so as to minimize an electricity cost with considering user’s comfort. Among the home appliance, electric heater (EH) is a representative appliance, which is affected by the external temperature. In this paper, an optimal scheduling algorithm for an electric heater (EH) is addressed based on the method of branch and bound. As a result, scenarios for the EH usage are obtained according to user’s comfort levels and then the residential consumer would select the best scenario. The case study shows the effects of the proposed algorithm compared with the traditional operation of the EH, and it represents impacts of the comfort level on the scheduling result.

Influence of Densification Process and Material Properties on Final Briquettes Quality from Fast-Growing Willows

Biomass treatment through densification is very suitable and helpful technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and material variables, which are ultimately reflected on the final solid biofuels quality. The paper deals with the experimental research of the relationship between technological and material variables during densification of fast-growing trees, roundly fast-growing willows. The main goal of presented experimental research is to determine the relationship between compression pressure and raw material particle size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of particle size with interaction of compression pressure and stabilization time on the quality properties of briquettes was determined. These variables interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and from densification machines constructions point of view is very important to know about mutual interaction of these variables on final briquettes quality. The experimental findings presented here are showing the importance of mentioned variables during the densification process. 

Effect of Unbound Granular Materials Nonlinear Resilient Behavior on Pavement Response and Performance of Low Volume Roads

Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behavior of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behavior of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by Falling Weight Deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated. 

Exploring Tree Growth Variables Influencing Carbon Sequestration in the Face of Climate Change

One of the major problems being faced by human society is that the global temperature is believed to be rising due to human activity that releases carbon IV Oxide (CO2) to the atmosphere. Carbon IV Oxide is the most important greenhouse gas influencing global warming and possible climate change. With climate change becoming alarming, reducing CO2 in our atmosphere has become a primary goal of international efforts. Forest lands are major sink and could absorb large quantities of carbon if the trees are judiciously managed. The study aims at estimating the carbon sequestration capacity of Pinus caribaea (pine) and Tectona grandis (Teak) under the prevailing environmental conditions and exploring tree growth variables that influences the carbon sequestration capacity in Omo Forest Reserve, Ogun State, Nigeria. Improving forest management by manipulating growth characteristics that influences carbon sequestration could be an adaptive strategy of forestry to climate change. Random sampling was used to select Temporary Sample Plots (TSPs) in the study area from where complete enumeration of growth variables was carried out within the plots. The data collected were subjected to descriptive and correlational analyses. The results showed that average carbon stored by Pine and Teak are 994.4±188.3 Kg and 1350.7±180.6 Kg respectively. The difference in carbon stored in the species is significant enough to consider choice of species relevant in climate change adaptation strategy. Tree growth variables influence the capacity of the tree to sequester carbon. Height, diameter, volume, wood density and age are positively correlated to carbon sequestration. These tree growth variables could be manipulated by the forest manager as an adaptive strategy for climate change while plantations of high wood density species could be relevant for management strategy to increase carbon storage.

Instant Location Detection of Objects Moving at High-Speedin C-OTDR Monitoring Systems

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data of the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as «signaling parameters» (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of COTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources, but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as rule. This report contains describing of the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Development and Characterization of Wheat Bread with Lupin Flour

The purpose of the present work was to develop an innovative food product with good textural and sensorial characteristics. The product, a new type of bread, was prepared with wheat (90%) and lupin (10%) flours, without the addition of any conservatives. Several experiences were also done to find the most appropriate proportion of lupin flour. The optimized product was characterized considering the rheological, physical-chemical and sensorial properties. The water absorption of wheat flour with 10% of lupin was higher than that of the normal wheat flours, and Wheat Ceres flour presented the lower value, with lower dough development time and high stability time. The breads presented low moisture but a considerable water activity. The density of bread decreased with the introduction of lupin flour. The breads were quite white, and during storage the colour parameters decreased. The lupin flour clearly increased the number of alveolus, but the total area increased significantly just for the Wheat Cerealis bread. The addition of lupin flour increased the hardness and chewiness of breads, but the elasticity did not vary significantly. Lupin bread was sensorially similar to wheat bread produced with WCerealis flour, and the main differences are the crust rugosity, colour and alveolus characteristics.

Reinforcement of Calcium Phosphate Cement with E-Glass Fibre

Calcium Phosphate Cement (CPC) due to its high bioactivity and optimum bioresorbability shows excellent bone regeneration capability. Despite it has limited applications as bone implant due to its macro-porous microstructure causing its poor mechanical strength. The reinforcement of apatitic CPCs with biocompatible fibre glass phase is an attractive area of research to improve upon its mechanical strength. Here, we study the setting behaviour of Si-doped and un-doped α tri calcium phosphate (α - TCP) based CPC and its reinforcement with addition of E-glass fibre. Alpha Tri calcium phosphate powders were prepared by solid state sintering of CaCO3 , CaHPO4 and Tetra Ethyl Ortho Silicate (TEOS) was used as silicon source to synthesize Si doped α-TCP powders. Both initial and final setting time of the developed cement was delayed because of Si addition. Crystalline phases of HA (JCPDS 9- 432), α-TCP (JCPDS 29-359) and β-TCP (JCPDS 9-169) were detected in the X-ray diffraction (XRD) pattern after immersion of CPC in simulated body fluid (SBF) for 0 hours to 10 days. As Si incorporation in the crystal lattice stabilized the TCP phase, Si doped CPC showed little slower rate of conversion into HA phase as compared to un-doped CPC. The SEM image of the microstructure of hardened CPC showed lower grain size of HA in un-doped CPC because of premature setting and faster hydrolysis of un-doped CPC in SBF as compared that in Si-doped CPC. Premature setting caused generation of micro and macro porosity in un-doped CPC structure which resulted in its lower mechanical strength as compared to that in Si-doped CPC. It was found that addition of 10 wt% of E-glass fibre into Si-doped α-TCP increased the average DTS of CPC from 8 MPa to 15 MPa as the fibres could resists the propagation of crack by deflecting the crack tip. Our study shows that biocompatible E-glass fibre in optimum proportion in CPC matrix can enhance the mechanical strength of CPC without affecting its biocompatibility. 

Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2fw, 3fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Military Court’s Jurisdiction over Military Members Who Commit General Crimes under Indonesian Military Judiciary System in Comparison with Other Countries

The importance of this study is to understand how Indonesian military court asserts its jurisdiction over military members who commit general crimes within the Indonesian military judiciary system in comparison to other countries. This research employs a normative-juridical approach in combination with historical and comparative-juridical approaches. The research specification is analytical-descriptive in nature, i.e. describing or outlining the principles, basic concepts, and norms related to military judiciary system, which are further analyzed within the context of implementation and as the inputs for military justice regulation under the Indonesian legal system. Main data used in this research are secondary data, including primary, secondary and tertiary legal sources. The research focuses on secondary data, while primary data are supplementary in nature. The validity of data is checked using multi-methods commonly known as triangulation, i.e. to reflect the efforts to gain an in-depth understanding of phenomena being studied. Here, the military element is kept intact in the judiciary process with due observance of the Military Criminal Justice System and the Military Command Development Principle. The Indonesian military judiciary jurisdiction over military members committing general crimes is based on national legal system and global development while taking into account the structure, composition and position of military forces within the state structure. Jurisdiction is formulated by setting forth the substantive norm of crimes that are military in nature. At the level of adjudication jurisdiction, the military court has a jurisdiction to adjudicate military personnel who commit general offences. At the level of execution jurisdiction, the military court has a jurisdiction to execute the sentence against military members who have been convicted with a final and binding judgement. Military court's jurisdiction needs to be expanded when the country is in the state of war.

Aging Effect on Mechanical Behavior of Duplex Satinless Steel

Effect of alloying on the microstructure and mechanical properties of heat-resisting duplex stainless steel (DSS) for Mg production was investigated in this study. 25Cr-8Ni based DSS’s were cast into rectangular ingots of which the dimension was 350×350×100 mm3 . Nitrogen and Yttrium were added in the range within 0.3 in weight percent. Phase equilibrium was calculated using the FactSage®, thermodynamic software. Hot exposure, high temperature tensile and compression tests were conducted on the ingots at 1230oC, which is operation temperature employed for Mg production by Silico-thermic reduction. The steel with N and Y showed much higher strength than 310S alloy in both tensile and compression tests. By thermal exposition at 1230oC for 200 hrs, hardness of DSS containing N and Y was found to increase. Hot workability of the heat-resisting DSS was evaluated by employing hot rolling at 1230 oC. Hot shortness was observed in the ingot with N and found to disappear after addition of Y.

A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

A Two-Step, Temperature-Staged Direct Coal Liquefaction Process

The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal remains an abundant resource. The aim of this work was to produce a high value hydrocarbon liquid product using a Direct Coal Liquefaction (DCL) process at, relatively mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated in a dual reactor lab-scale pilot plant facility. The objectives included maximising thermal dissolution of the coal in the presence of tetralin as the hydrogen donor solvent in the first stage with 2:1 and 3:1 solvent: coal ratios. Subsequently, in the second stage, hydrogen saturation, in particular, hydrodesulphurization (HDS) performance was assessed. Two commercial hydrotreating catalysts were investigated viz. NickelMolybdenum (Ni-Mo) and Cobalt-Molybdenum (Co-Mo). GC-MS results identified 77 compounds and various functional groups present in the first and second stage liquid product. In the first stage 3:1 ratios and liquid product yields catalysed by magnetite were favoured. The second stage product distribution showed an increase in the BTX (Benzene, Toluene, Xylene) quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, Ni-Mo had an improved performance over Co-Mo. Co-Mo is selective to a higher concentration of cyclohexane. For 16 days on stream each, Ni-Mo had a higher activity than Co-Mo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated. 

Development and Evaluation of a Nutraceutical Herbal Summer Drink

In the past few years, high consumption of soft drinks has attracted negative attention world-wide due to its possible adverse effects, leading the health conscious people to find alternative nutraceutical or herbal health drinks. In the present study, a nutraceutical soft drink was developed utilizing some easily available and well known traditional herbs having nutritional potential. The key ingredients were selected as bael, amla, lemon juice, ashwagandha and poppy seeds based on their household routine use in the summer with proven refreshing, cooling and energetic feeling since ages. After several trials made, the final composition of nutraceutical summer soft drink was selected as most suitable combination based on the taste, physicochemical, microbial and organoleptic point of view. The physicochemical analysis of the prepared drink found to contain optimum level of titratable acidity, total soluble solids and pH which were in accordance of the commercial recommendations. There were no bacterial colonies found in the product therefore found within limits. During the nine point’s hedonic scale sensory evaluation, the drink was strongly liked for colour, taste, flavour and texture. The formulation was found to contain flavonoids (80mg/100ml), phenolics (103mg/100ml), vitamin C (250mg/100ml) and has antioxidant potential (75.52%) apart from providing several other essential vitamins, minerals and healthy components. The developed nutraceutical drink provides an economical and feasible option for the consumers with very good taste combined with potential health benefits. The present drink is potentially capable to replace the synthetic soft drinks available in the market.

Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1+(2,3)→1+(2,3) as well as recombination 1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the threedimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Structural Characteristics of HPDSP Concrete on Beam Column Joints

The seriously damaged structures during earthquakes show the need and importance of design of reinforced concrete structures with high ductility. Reinforced concrete beam-column joints have an important function in all structures. Under seismic excitation, the beam column joint region is subjected to horizontal and vertical shear forces whose magnitude is many times higher than the adjacent beam and column. Strength and ductility of structures depends mainly on proper detailing of the reinforcement in beamcolumn joints and the old structures were found ductility deficient. DSP materials are obtained by using high quantities of super plasticizers and high volumes of micro silica. In the case of High Performance Densified Small Particle Concrete (HPDSPC), since concrete is dense even at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. This in turn will improve cracking behaviour, ductility and energy absorption capacity of composites in addition to durability. The fine fibers used in our mix are 0.3mm diameter and 10 mm which can be easily placed with high percentage. These fibers easily transfer stresses and act as a composite concrete unit to take up extremely high loads with high compressive strength. HPDSPC placed in the beam column joints helps in safety of human life due to prolonged failure.

Pioneer Synthesis and Characterization of Boron Containing Hard Materials

The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modifiedmicrowave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differential thermal analysis (TG/DTA).

Impact Assessment of Credit Policy and Medical Credit Facility (MCF) on Nigerian Private Sector Health Market: Evidence from Eight Nigerian States

A teeming set of doctors that graduated from various universities within and outside Nigeria with the hope of practicing in the country, has their hope shattered because of poor financing, lack of medical equipments and a very weak healthcare systems. Such hydra headed challenges, allows room for quackery which increasingly contributes to the cause of mortality in Nigeria. With a view of reversing the challenges of healthcare delivery and financing in Nigeria, African Health Market for Equity (AHME), a project funded by the Bill and Melinda Gates foundation [With contribution from Department For International Development (DFID)] and currently implemented in three African Countries (Nigeria, Kenya and Ghana) over a Five (5) year period supports the healthcare sector via Medical credit fund (MCF). The study examines the impact of credit policy and medical credit funding on Nigerian health market. Ordinary least square analysis, correlation and granger causality tests were employed to measure the extent to which the Nigerian healthcare market has been influenced. Medical credit fund significantly and positively influenced average monthly turnover of private healthcare providers and Commercial bank’s lending rate had a weak relationship with access to credit/approved loans (13.46%). The programme has so far made 13.91% progress, which is very poor, considering the minimum targeted private health care providers (437.6) and expected number of loan approvals (180.4) for the two years. Medical credit policy in Nigeria should be revised to include private healthcare providers in rural area for more positive impact and increased returns. Good brand advert and sensitization of the programme to stakeholders and health pressure group, and an extension of the programme beyond five years is necessary to better address the issues raised in the study.

Numerical and Infrared Mapping of Temperature in Heat Affected Zone during Plasma Arc Cutting of Mild Steel

During welding or flame cutting of metals, the prediction of heat affected zone (HAZ) is critical. There is need to develop a simple mathematical model to calculate the temperature variation in HAZ and derivative analysis can be used for this purpose. This study presents analytical solution for heat transfer through conduction in mild steel plate. The homogeneous and nonhomogeneous boundary conditions are single variables. The full field analytical solutions of temperature measurement, subjected to local heating source, are derived first by method of separation of variables followed with the experimental visualization using infrared imaging. Based on the present work, it is suggested that appropriate heat input characteristics controls the temperature distribution in and around HAZ.