Green-Reduction of Covalently Functionalized Graphene Oxide with Varying Stoichiometry

Graphene-based materials were prepared by chemical reduction of covalently functionalized graphene oxide with environmentally friendly agents. Two varying stoichiometry of graphene oxide (GO) induced by using different chemical preparation conditions, further covalent functionalization of the GO materials with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride / N-hydroxysuccinimide and ascorbic acid and sodium bisulfite as reducing agents were exploited in order to obtain controllable properties of the final solution-based graphene materials. The obtained materials were characterized by thermo-gravimetric analysis, Fourier transform infrared and Raman spectroscopy and X-ray diffraction. The results showed successful functionalization of the GO materials, while a comparison of the deoxygenation efficiency of the two-type functionalized graphene oxide suspensions by the different reducing agents has been made, revealing the strong dependence of their properties on the GO structure and reducing agents.

An Analytical Method to Analysis of Foam Drainage Problem

In this study, a new reliable technique use to handle the foam drainage equation. This new method is resulted from VIM by a simple modification that is Reconstruction of Variational Iteration Method (RVIM). The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Foaming occurs in many distillation and absorption processes. Results are compared with those of Adomian’s decomposition method (ADM).The comparisons show that the Reconstruction of Variational Iteration Method is very effective and overcome the difficulty of traditional methods and quite accurate to systems of non-linear partial differential equations.

Changes in EEG and HRV during Event-Related Attention

Determination of attentional status is important because working performance and an unexpected accident is highly related with the attention. The autonomic nervous and the central nervous systems can reflect the changes in person’s attentional status. Reduced number of suitable pysiological parameters among autonomic and central nervous systems related signal parameters will be critical in optimum design of attentional devices. In this paper, we analyze the EEG (Electroencephalography) and HRV (Heart Rate Variability) signals to demonstrate the effective relation with brain signal and cardiovascular signal during event-related attention, which will be later used in selecting the minimum set of attentional parameters. Time and frequency domain parameters from HRV signal and frequency domain parameters from EEG signal are used as input to the optimum feature parameters selector.

Supplier Selection Criteria and Methods in Supply Chains: A Review

An effective supplier selection process is very important to the success of any manufacturing organization. The main objective of supplier selection process is to reduce purchase risk, maximize overall value to the purchaser, and develop closeness and long-term relationships between buyers and suppliers in today’s competitive industrial scenario. The literature on supplier selection criteria and methods is full of various analytical and heuristic approaches. Some researchers have developed hybrid models by combining more than one type of selection methods. It is felt that supplier selection criteria and method is still a critical issue for the manufacturing industries therefore in the present paper the literature has been thoroughly reviewed and critically analyzed to address the issue.

Biomechanics Analysis of Bicross Start

The article deals with a biomechanics analysis of the classic bicross start with a backward movement of the bike. This is a case study analyzing this type of start in two bicross riders representing the Czech Republic. Based on the 3D kinematic analysis and with a special emphasis on the ankle movement we have divided the start into five phases – phase n. 1 – reaction time, phase n. 2 – preparation movements time, phase n. 3 – first pedal stroke time, phase n. 4 – dead point pedal passage time, phase n. 5 – second pedal stroke time. Further we have demonstrated the significance of kinematic characteristics in various stages of the bicross start including their values and the extent of change. These primarily include the vector of the instantaneous velocity of the head, wrists, elbows, shoulders, hip and knee joints. The significant angle characteristics have been noted in elbow, shoulder, hip and knee joints. The results of this work indicate the types of movement prevailing in the respective phases and as such are expected to serve as a basis for further analyses of this movement structure performed, however, on a large research sample.

Sensory Evaluation of Diversified Sweet Potato Drinks among Consumers: Implication for Malnutrition Reduction in Nigeria

Diversification of the processing of crops is a very important way of reducing food insecurity, perishability of most perishable crops and generates verities. Sweet potato has been diversified in various ways by researchers through processing into different forms for consumption. The study considered diversifying the crop into different drinks by combining it with different high nutrient acceptable cereal. There was significant relationship between the educational background of the respondents and level of acceptability of the sweet potato drinks (χ 2 = 1.033 and P = 0.05). Interestingly, significant relationship existed between the most preferred sweet potato drink by the respondents and level of acceptability of the sweet potato drinks (r = 0.394, P = 0.031). The high level of acceptability of the drinks will lead to enhanced production of the crops required for the drinks that would assist in income generation and alleviating food and nutrition insecurity.

Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders

The present study explores flow visualization experiments with various blunt shaped bluff bodies placed inside a circular pipe. The bodies mainly comprise of modifications of trapezoidal cylinder, most widely used in practical applications, such as vortex flowmeters. The present configuration possesses the feature of both internal and external flows with low aspect ratio. The vortex dynamics of bluff bodies in such configuration is seldom reported in the literature. Dye injection technique is employed to visualize the complex vortex formation mechanism behind the bluff bodies. The influence of orientation, slit and after body shape is studied in an attempt to obtain better understanding of the vortex formation mechanism. Various wake parameters like Strouhal number, vortex formation length and wake width are documented for these shapes. Vortex formation both with and without shear layer interaction is observed for most of the shapes.

A Study of Current Maintenance Strategies and the Reliability of Critical Medical Equipment in Hospitals in Relation to Patient Outcomes

This study investigates the relationship between the reliability of critical medical equipment (CME) and the effectiveness of CME maintenance management strategies in relation to patient outcomes in 84 public hospitals of a top 20 OECD country. The work has examined the effectiveness of CME maintenance management strategies used by the public hospital system of a large state run health organization. The conceptual framework was designed to examine the significance of the relationship between six variables: (1) types of maintenance management strategies, (2) maintenance services, (3) maintenance practice, (4) medical equipment reliability, (5) maintenance costs and (6) patient outcomes. The results provide interesting insights into the effectiveness of the maintenance strategies used. For example, there appears to be about a 1 in 10 000 probability of failure of anesthesia equipment, but these seem to be confined to specific maintenance situations. There are also some findings in relation to outsourcing of maintenance. For each of the variables listed, results are reported in relation to the various types of maintenance strategies and services. Decision-makers may use these results to evaluate more effective maintenance strategies for their CME and generate more effective patient outcomes.

Influence of Strength Abilities on Quality of the Handstand

The contribution deals with influence of strength abilities on quality of performance of static balance movement structure – handstand. To test the strength abilities we selected following tests: number of push-ups per minute and persistence in trunk backward bend in sitting position. We tested the dependent variable by three tests – persistence in handstand position on a stabilometric platform, persistence in handstand position and evaluation of quality of handstand performance. Pearson’s correlation coefficient was used to formulate the relationship between variables. The results showed a statistically significant dependence using which we deduced conclusions for training practice.

Evaluation of Sensory Attributes of Snack from Maize-Moringa Seed Flour Blends

Healthy snack (cookie) was produced from corn flour and moringa seed flour blends. The samples were mixed in various proportions and analysed for proximate composition and functional characteristics. The healthy snack (cookies) was evaluated for sensory parameters of Colour, Crispness, Taste, Aroma and Overall Acceptability. The proximate analysis of the flour obtained from different proportion showed that proximate composition increased with increase in substitution level of moringa seed flour especially with protein, fat and crude fibre. The protein contents of samples range from 1.75 to 6.58, fat from 0.60 to 6.80, while fibre from 0.85 to 2.06. There was no significance difference in the functional properties of the blend when compared with 100% corn flour. Sensory evaluation results shows a significant difference in Colour, Taste, Crispness, Aroma and Overall Acceptability of healthy snack (cookies) sample from different blends at 5% significance level.

Optimization of Lipase Production Using Bacillus subtilis by Response Surface Methodology

A total of 6 isolates of Bacillus subtilis were isolated from oil mill waste collected in Namakkal district, Tamilnadu, India. The isolated bacteria were screened using lipase screening medium containing Tween 80. BS-3 isolate exhibited a greater clear zone than the others, indicating higher lipase activity. Therefore, this isolate was selected for media optimization studies. Ten process variables were screened using Plackett–Burman design and were further optimized by central composite design of response surface methodology for lipase production in submerged fermentation. Maximum lipase production of 16.627 U/min/ml were predicted in medium containing yeast extract (9.3636g), CaCl2 (0.8986g) and incubation periods (1.813 days). A mean value of 16.98 ± 0.2286 U/min/ml of lipase was acquired from real experiments.

Effects of Ice and Seawater Storing Conditions on the Sensory, Chemical and Microbiological Quality of the Mediterranean Hake (Merluccius merluccius) During Post-Catch Handling and Distribution

Changes in the sensory, chemical and microbiological quality of the Mediterranean hake during post-catch handling and distribution were investigated. 115 fish samples were seasonally received during three stages of the transfer route from the sea to the consumer and two storage methods were recorded, seawater and ice storage. Microbiological evaluation revealed higher status for the ice stored samples regarding heterotrophic bacteria (2.68 log cfu/g and 1.92 log cfu/g at 22oC and 37°C respectively) and psychrotrophic counts (3.20 log cfu/g), with statistically significant differences among storage methods. Sensory evaluation also revealed higher status for the ice stored samples with a mean quality index of 0.17 and a spoilage time estimated at 30 hours, in contrast to seawater storage, which varied from 0.28 to 0.3, and a 14-hour estimated spoilage. Detected pathogens were identified mainly in the seawater stored samples, posing questions on the quality of the product reaching the seafood markets.

Performance Analysis Model Development for Mae Moh Coal-Fired Power Plant

Electrification is a complex process and governed by various parameters.  Modeling of power plant’s target efficiency or target heat rate is often formulated and compared with the actual values. This comparison not only implies the performance of the power plant but also reflects the energy losses possibly inherited in some of related equipment and processes. The current modeling of Coal-fired Mae Moh power plant was formulated at the first commissioning. Some of equipments were replaced due to its life time. Relatively outdated for 20 years, the utilization of the model is not accomplished. This work has focused on the development of the performance analysis model of aforementioned power plant according to the most updated and current working conditions. The model is more appropriate and shows accuracy in its analysis.  Losses are detected and measures are introduced such that reduction in energy consumption, related cost, and also environment impacts can be anticipated.

Investigation in Physically-Chemical Parameters of in Latvia Harvested Conventional and Organic Triticale Grains

Triticale is a manmade hybrid of wheat and rye that carries the A and B genome of durum wheat and the R genome of rye. In the scientific literature information about in Latvia harvested organic and conventional triticale grain physically-chemical composition was not found in general. Therefore, the main purpose of the current research was to investigate physically-chemical parameters of in Latvia harvested organic and convectional triticale grains. The research was accomplished on in Year 2012 from State Priekuli Plant Breeding Institute (Latvia) harvested organic and conventional triticale grains: “Dinaro”, “9403-97”, “9405-23” and “9402-3”. In the present research significant differences in chemical composition between organic and conventional triticale grains harvested in Latvia was found. It is necessary to mention that higher 1000 grain weight, bulk density and gluten index was obtained for conventional and organic triticale grain variety “9403-97”. However higher falling number, gluten and protein content was obtained for triticale grain variety “9405-23”.

Absorbed Dose Measurement in Gonads Menduring Abdominal and Pelvicradiotherapy

Two different testicular tissues have to be distinguished in regard to radiation damage: first the seminiferous tubules, corresponding to the sites of spermatogenesis, which are extremely radiosensitive. Second the testosterone secreting Leydig cells, which are considered to be less radiosensitive. This study aims to estimate testicular dose and the associated risks for infertility and hereditary effects from Abdominal and pelvic irradiation. Radiotherapy was simulated on a humanoid phantom using a 15 MV photon beam. Testicular dose was measured for various field sizes and tissue thicknesses along beam axis using an ionization chamber and TLD. For transmission Factor Also common method of measuring the absorbed dose distribution and electron contamination in the build-up region of high-energy beams for radiation therapy is by means of parallel-plate Ionisation chambers. Gonadal dose was reduced by placing lead cups around the testes supplemented by a field edge block. For a tumor dose of 100 cGy, testicular dose was 2.96-8.12 cGy depending upon the field size and the distance from the inferior field edge. The treatment at parameters, the presence of gonad shield and the somatometric characteristics determine whether testicular dose can exceed 1 Gy which allows a complete recovery of spermatogenesis.

Turning Thin-Walled Workpieces with Variable Depth of Cut

The article deals with the possibilities of increasing the efficiency of turning thin-walled workpieces. It proposes a new strategy for turning and it proposes new implementation of roughing cycles where a variable depth of cut is applied. Proposed roughing cycles are created in the CAD/CAM system. These roughing cycles are described in relation to their further use in practice. The experimental research has focused on monitoring the durability of cutting tool and increases its tool life. It compares the turning where the standard roughing cycle is used and the turning where the proposed roughing cycle with variable depth of cut is applied. In article are monitored tool wear during cutting with the sintered carbide cutting edge. The result verifies theoretical prerequisites of tool wear.

A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Behavior of Concrete Slab Track on Asphalt Trackbed Subjected to Thermal Load

Concrete track slab and asphalt trackbed are being introduced in Korea for providing good bearing capacity, durability to the track and comfortable rideness to passengers. Such a railway system has been designed by the train load so as to ensure stability. But there is lack of research and design for temperature changes which influence the behavior characteristics of concrete and asphalt. Therefore, in this study, the behavior characteristics of concrete track slab subjected to varying temperatures were analyzed through structural analysis using the finite element analysis program. The structural analysis was performed by considering the friction condition on the boundary surfaces in order to analyze the interaction between concrete slab and asphalt trackbed. As a result, the design of the railway system should be designed by considering the interaction and temperature changes between concrete track slab and asphalt trackbed.

Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.

Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations

The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.