Evaluation of AR-4BL-MAST with Multiple Markers Interaction Technique for Augmented Reality Based Engineering Application

Augmented reality (AR) technology has the capability to provide many benefits in the field of education as a modern technology which aided learning and improved the learning experience. This paper evaluates AR based application with multiple markers interaction technique (touch-to-print) which is designed for analyzing the kinematics of 4BL mechanism in mechanical engineering. The application is termed as AR-4BL-MAST and it allows the users to touch the symbols on a paper in natural way of interaction. The evaluation of this application was performed with mechanical engineering students and human–computer interaction (HCI) experts to test its effectiveness as a tangible user interface application where the statistical results show its ability as an interaction technique, and it gives the users more freedom in interaction with the virtual mechanical objects.

Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Electronic Government around the World: Key Information and Communication Technology Indicators

Governments around the world are adopting Information and Communication Technologies (ICTs) because of the important opportunities it provides through E-government (EG) to modernize government public administration processes and delivery of quality and efficient public services. Almost every country in the world is adopting ICT in its public sector administration (EG) to modernize and change the traditional process of government, increase citizen engagement and participation in governance, as well as the provision of timely information to citizens. This paper, therefore, seeks to present the adoption, development and implementation of EG in regions globally, as well as the ICT indicators around the world, which are making EG initiatives successful. Europe leads the world in its EG adoption and development index, followed by the Americas, Asia, Oceania and Africa. There is a gradual growth in ICT indicators in terms of the increase in Internet access and usage, increase in broadband penetration, an increase of individuals using the Internet at home and a decline in fixed telephone use, while the mobile cellular phone has been on the increase year-on-year. Though the lack of ICT infrastructure is a major challenge to EG adoption and implementation around the world, in Africa it is very pervasive, hampering the expansion of Internet access and provision of broadband, and hence is a barrier to the successful adoption, development, and implementation of EG initiatives in countries on the continent. But with the general improvement and increase in ICT indicators around the world, it provides countries in Europe, Americas, Asia, Arab States, Oceania and Africa with the huge opportunity to enhance public service delivery through the adoption of EG. Countries within these regions cannot fail their citizens who desire to enjoy an enhanced and efficient public service delivery from government and its many state institutions.

Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Effect of Reynolds Number on Flow past a Square Cylinder in Presence of Upstream and Downstream Flat Plate at Small Gap Spacing

A two-dimensional numerical study for flow past a square cylinder in presence of flat plate both at upstream and downstream position is carried out using the single-relaxation-time lattice Boltzmann method for gap spacing 0.5 and 1. We select Reynolds numbers from 80 to 200. The wake structure mechanism within gap spacing and near wake region, vortex structures around and behind the main square cylinder in presence of flat plate are studied and compared with flow pattern around a single square cylinder. The results are obtained in form of vorticity contour, streamlines, power spectra analysis, time trace analysis of drag and lift coefficients. Four different types of flow patterns were observed in both configurations, named as (i) Quasi steady flow (QSF), (ii) steady flow (SF), (iii) shear layer reattachment (SLR), (iv) single bluff body (SBB). It is observed that upstream flat plate plays a vital role in significant drag reduction. On the other hand, rate of suppression of vortex shedding is high for downstream flat plate case at low Reynolds numbers. The reduction in mean drag force and root mean square value of drag force for upstream flat plate case are89.1% and 86.3% at (Re, g) = (80, 0.5d) and (120, 1d) and reduction for downstream flat plate case for mean drag force and root mean square value of drag force are 11.10% and 97.6% obtained at (180, 1d) and (180, 0.5d).

Investigation of Failures in Wadi-Crossing Pipe Culverts, Sennar State, Sudan

Crossing culverts are essential element of rural roads. The paper aims to investigate failures of recently constructed wadi-crossing pipe culverts in Sennar state and provide necessary remedial measures. The investigation is conducted to provide an extensive diagnosis study in order to find out the main structural and hydrological weaknesses of the culverts. Literature of steel pipe culverts related to construction practices and common types of culvert failures and their appropriate mitigation measures were reviewed. A detailed field survey was conducted to detect failures and defects appeared on the existing culverts. The results revealed that seepage of water through the embankment and foundation of the culverts leads to excessive erosion and scouring causing sever failures and damages. The design mistakes and poor construction were detected as the main causes of culverts failures. For sustainability of the culverts, various remedial measures are recommended to be considered in urgent rehabilitation of the existing crossings.

Integration of Unified Power Flow Controller with Backup Energy Supply System for Enhancing Power System Stability

An electrical power system has some negative aspects such as flickering and deviations of voltage/power. This can be eliminated using energy storage devices that will provide a backup energy at the time of voltage/power deviations. Energy-storage devices get charging when system voltage/power is higher than reference value and discharging when system voltage/power is lower than reference value, it is acting as catalysts to provide energy boost. In this paper, a dynamic control of Unified Power Flow Controller (UPFC) integrated with superconducting magnetic energy storage (SMES) is developed to improve the power quality, power oscillation damping, and dynamic voltage stability through the transmission line. UPFC inter-connected to SMES through an interface with DC-DC chopper. This inter-connected system is capable of injecting (absorbing) the real and reactive power into (from) the system at the beginning of stability problems. In this paper, the simulation results of UPFC integrated with SMES and UPFC integrated with fuel cells (FCs) are compared using MATLAB/Simulink software package.

Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions

This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.

Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Identification of Factors Influencing Costs in Green Projects

Cost has always been the leading concern in green building development. The perception that construction cost for green building is higher than conventional buildings has only made the discussion of green building cost more difficult. Understanding the factors that will influence the cost of green construction is expected to shed light into what makes green construction more or at par with conventional projects, or perhaps, where cost can be optimised. This paper identifies the elements of cost before shifting the attention to the influencing factors. Findings from past studies uncovered various factors related to cost which are grouped into five focal themes i.e. awareness, knowledge, financial, technical, and government support. A conceptual framework is produced in a form of a flower diagram indicating the cost influencing factors of green building development. These factors were found to be both physical and non-physical aspects of a project. The framework provides ground for the next stage of research that is to further explore how these factors influence the project cost and decision making.

Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach

This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m3 to 1380 kg/m3 were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency.

A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors

Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.

Reflections on Opportunities and Challenges for Systems Engineering

This paper summarizes some of the discussions that occurred in a workshop in West Virginia, U.S.A which was sponsored by the National Science Foundation (NSF) in February 2016. The goal of the workshop was to explore the opportunities and challenges for applying systems engineering in large enterprises, and some of the issues that still persist. The main topics of the discussion included challenges with elaboration and abstraction in large systems, interfacing physical and social systems, and the need for axiomatic frameworks for large enterprises. We summarize these main points of discussion drawing parallels with decision making in organizations to instigate research in these discussion areas.

Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

A Type-2 Fuzzy Model for Link Prediction in Social Network

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Low Frequency Multiple Divider Using Resonant Model

A well-defined frequency multiple dividing (FMD) circuit using a resonant model is presented in this research. The basic component of a frequency multiple divider as used in a resonant model is established by compositing a well-defined resonant effect of negative differential resistance (NDR) characteristics which possesses a wider operational region and high operational current at a bias voltage of about 1.15 V. The resonant model is then applied in the frequency dividing circuit with the above division ratio (RD) of 200 at the signal input of middle frequency. The division ratio also exists at the input of a low frequency signal.

A Note on Metallurgy at Khanak: An Indus Site in Tosham Mining Area, Haryana

Recent discoveries of Bronze Age artefacts, tin slag, furnaces and crucibles, together with new geological evidence on tin deposits in Tosham area of Bhiwani district in Haryana (India) provide the opportunity to survey the evidence for possible sources of tin and the use of bronze in the Harappan sites of north western India. Earlier, Afghanistan emerged as the most promising eastern source of tin utilized by Indus Civilization copper-smiths. Our excavations conducted at Khanak near Tosham mining area during 2014 and 2016 revealed ample evidence of metallurgical activities as attested by the occurrence of slag, ores and evidences of ashes and fragments of furnaces in addition to the bronze objects. We have conducted petrological, XRD, EDAX, TEM, SEM and metallography on the slag, ores, crucible fragments and bronze objects samples recovered from Khanak excavations. This has given positive indication of mining and metallurgy of poly-mettalic Tin at the site; however, it can only be ascertained after the detailed scientific examination of the materials which is underway. In view of the importance of site, we intend to excavate the site horizontally in future so as to obtain more samples for scientific studies.

Creation of Greater Mekong Subregion Regional Competitiveness through Cluster Mapping

This research investigates cluster development in the area called the Greater Mekong Subregion (GMS), which consists of Thailand, the People’s Republic of China (PRC), the Yunnan Province and Guangxi Zhuang Autonomous Region, Myanmar, the Lao People’s Democratic Republic (Lao PDR), Cambodia, and Vietnam. The study utilized Porter’s competitiveness theory and the cluster mapping approach to analyze the competitiveness of the region. The data collection consists of interviews, focus groups, and the analysis of secondary data. The findings identify some evidence of cluster development in the GMS; however, there is no clear indication of collaboration among the components in the clusters. GMS clusters tend to be stand-alone. The clusters in Vietnam, Lao PDR, Myanmar, and Cambodia tend to be labor intensive, whereas the clusters in Thailand and the PRC (Yunnan) have the potential to successfully develop into innovative clusters. The collaboration and integration among the clusters in the GMS area are promising, though it could take a long time. The most likely relationship between the GMS countries could be, for example, suppliers of the low-end, labor-intensive products will be located in the low income countries such as Myanmar, Lao PDR, and Cambodia, and these countries will be providing input materials for innovative clusters in the middle income countries such as Thailand and the PRC.