Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Evaluation and Preparation of Crystal Modifications of Artesunate: In vivo Studies

Five crystal modifications of water insoluble artesunate were generated by recrystallizing it from various solvents with improved physicochemical properties. These generated crystal forms were characterized to select the most potent and soluble form. SEM of all the forms showed changes in external shape leading them to be different morphologically. DSC thermograms of Form III and Form V showed broad endotherm peaks at 83.04oC and 76.96oC prior to melting fusion of drug respectively. Calculated weight loss in TGA revealed that Form III and Form V are methanol and acetone solvates respectively. However, few additional peaks were appeared in XRPD pattern in these two solvate forms. All forms exhibit exothermic behavior in buffer and two solvates display maximum ease of molecular release from the lattice. Methanol and acetone solvates were found to be most soluble forms and exhibited higher antimalarial efficacy showing higher survival rate (83.3%) after 30 days.

Food Safety and Perceived Risk: A Case Study of Khao San Road, Bangkok, Thailand

Food safety is an important concern for holiday makers in foreign and unfamiliar tourist destinations. In fact, risk from food in these tourist destinations has an influence on tourist perception. This risk can potentially affect physical health and lead to an inability to pursue planned activities. The objective of this paper was to compare foreign tourists- demographics including gender, age and education level, with the level of perceived risk towards food safety. A total of 222 foreign tourists during their stay at Khao San Road in Bangkok were used as the sample. Independent- samples ttest, analysis of variance, and Least Significant Difference or LSD post hoc test were utilized. The findings revealed that there were few demographic differences in level of perceived risk among the foreign tourists. The post hoc test indicated a significant difference among the old and the young tourists, and between the higher and lower level of education. Ranks of tourists- perceived risk towards food safety unveiled some interesting results. Tourists- perceived risk of food safety in established restaurants can be ranked as i) cleanliness of dining utensils, ii) sanitation of food preparation area, and iii) cleanliness of food seasoning and ingredients. Whereas, the tourists- perceived risk of food safety in street food and drink can be ranked as i) cleanliness of stalls and pushcarts, ii) cleanliness of food sold, and iii) personal hygiene of street food hawkers or vendors.

Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel

Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.

Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Micromachining with ECDM: Research Potentials and Experimental Investigations

Electro Chemical Discharge Machining (ECDM) is an emerging hybrid machining process used in precision machining of hard and brittle non-conducting materials. The present paper gives a critical review on materials machined by ECDM under the prevailing machining conditions; capability indicators of the process are reported. Some results obtained while performing experiments in micro-channeling on soda lime glass using ECDM are also presented. In these experiments, Tool Wear (TW) and Material Removal (MR) were studied using design of experiments and L–4 orthogonal array. Experimental results showed that the applied voltage was the most influencing parameter in both MR and TW studies. Field emission scanning electron microscopy (FESEM) results obtained on the microchannels confirmed the presence of micro-cracks, primarily responsible for MR. Chemical etching was also seen along the edges. The Energy dispersive spectroscopy (EDS) results were used to detect the elements present in the debris and specimens.

Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer

We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.

Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method

Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.

Transport and Fate of Copper in Soils

The presence of toxic heavy metals in industrial effluents is one of the serious threats to the environment. Heavy metals such as Cadmium, Chromium, Lead, Nickel, Zinc, Mercury, Copper, Arsenic are found in the effluents of industries such as foundries, electroplating, petrochemical, battery manufacturing, tanneries, fertilizer, dying, textiles, metallurgical and metal finishing. Tremendous increase of industrial copper usage and its presence in industrial effluents has lead to a growing concern about the fate and effects of Copper in the environment. Percolation of industrial effluents through soils leads to contamination of ground water and soils. The transport of heavy metals and their diffusion into the soils has therefore, drawn the attention of the researchers. In this study, an attempt has been made to delineate the mechanisms of transport and fate of copper in terrestrial environment. Column studies were conducted using perplex glass square column of dimension side 15 cm and 1.35 m long. The soil samples were collected from a natural drain near Mohali (India). The soil was characterized to be poorly graded sandy loam. The soil was compacted to the field dry density level of about 1.6 g/cm3. Break through curves for different depths of the column were plotted. The results of the column study indicated that the copper has high tendency to flow in the soils and fewer tendencies to get absorbed on the soil particles. The t1/2 estimates obtained from the studies can be used for design copper laden wastewater disposal systems.

Development of an Infrared Thermography Method with CO2 Laser Excitation, Applied to Defect Detection in CFRP

This paper presents a NDT by infrared thermography with excitation CO2 Laser, wavelength of 10.6 μm. This excitation is the controllable heating beam, confirmed by a preliminary test on a wooden plate 1.2 m x 0.9 m x 1 cm. As the first practice, this method is applied to detecting the defect in CFRP heated by the Laser 300 W during 40 s. Two samples 40 cm x 40 cm x 4.5 cm are prepared, one with defect, another one without defect. The laser beam passes through the lens of a deviation device, and heats the samples placed at a determinate position and area. As a result, the absence of adhesive can be detected. This method displays prominently its application as NDT with the composite materials. This work gives a good perspective to characterize the laser beam, which is very useful for the next detection campaigns.

Real Power Generation Scheduling to Improve Steady State Stability Limit in the Java-Bali 500kV Interconnection Power System

This paper will discuss about an active power generator scheduling method in order to increase the limit level of steady state systems. Some power generator optimization methods such as Langrange, PLN (Indonesian electricity company) Operation, and the proposed Z-Thevenin-based method will be studied and compared in respect of their steady state aspects. A method proposed in this paper is built upon the thevenin equivalent impedance values between each load respected to each generator. The steady state stability index obtained with the REI DIMO method. This research will review the 500kV-Jawa-Bali interconnection system. The simulation results show that the proposed method has the highest limit level of steady state stability compared to other optimization techniques such as Lagrange, and PLN operation. Thus, the proposed method can be used to create the steady state stability limit of the system especially in the peak load condition.

Cloud Computing: Changing Cogitation about Computing

Cloud Computing is a new technology that helps us to use the Cloud for compliance our computation needs. Cloud refers to a scalable network of computers that work together like Internet. An important element in Cloud Computing is that we shift processing, managing, storing and implementing our data from, locality into the Cloud; So it helps us to improve the efficiency. Because of it is new technology, it has both advantages and disadvantages that are scrutinized in this article. Then some vanguards of this technology are studied. Afterwards we find out that Cloud Computing will have important roles in our tomorrow life!

Extraction of Symbolic Rules from Artificial Neural Networks

Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.

Kinetics Studies on Biological Treatment of Tannery Wastewater Using Mixed Culture

In this study, aerobic digestion of tannery industry wastewater was carried out using mixed culture obtained from common effluent treatment plant treating tannery wastewater. The effect of pH, temperature, inoculum concentration, agitation speed and initial substrate concentration on the reduction of organic matters were found. The optimum conditions for COD reduction was found to be pH - 7 (60%), temperature - 30ÔùªC (61%), inoculum concentration - 2% (61%), agitation speed - 150rpm (65%) and initial substrate concentration - 1560 mg COD/L (74%). Kinetics studies were carried by using Monod model, First order, Diffusional model and Singh model. From the results it was found that the Monod model suits well for the degradation of tannery wastewater using mixed microbial consortium.

Defluoridation of Water by Schwertmannite

In the present study Schwertmannite (an iron oxide hydroxide) is selected as an adsorbent for defluoridation of water. The adsorbent was prepared by wet chemical process and was characterized by SEM, XRD and BET. The fluoride adsorption efficiency of the prepared adsorbent was determined with respect to contact time, initial fluoride concentration, adsorbent dose and pH of the solution. The batch adsorption data revealed that the fluoride adsorption efficiency was highly influenced by the studied factors. Equilibrium was attained within one hour of contact time indicating fast kinetics and the adsorption data followed pseudo second order kinetic model. Equilibrium isotherm data fitted to both Langmuir and Freundlich isotherm models for a concentration range of 5-30 mg/L. The adsorption system followed Langmuir isotherm model with maximum adsorption capacity of 11.3 mg/g. The high adsorption capacity of Schwertmannite points towards the potential of this adsorbent for fluoride removal from aqueous medium.

Effect of Catalyst Preparation on the Performance of CaO-ZnO Catalysts for Transesterification

In this research, CaO-ZnO catalysts (with various Ca:Zn atomic ratios of 1:5, 1:3, 1:1, and 3:1) prepared by incipientwetness impregnation (IWI) and co-precipitation (CP) methods were used as a catalyst in the transesterification of palm oil with methanol for biodiesel production. The catalysts were characterized by several techniques, including BET method, CO2-TPD, and Hemmett Indicator. The effects of precursor concentration, and calcination temperature on the catalytic performance were studied under reaction conditions of a 15:1 methanol to oil molar ratio, 6 wt% catalyst, reaction temperature of 60°C, and reaction time of 8 h. At Ca:Zn atomic ratio of 1:3 gave the highest FAME value owing to a basic properties and surface area of the prepared catalyst.

The Comparation of Activation Nuclear Factor Kappa Beta (NFKB) at Rattus Novergicus Strain Wistar Induced by Various Duration High Fat Diet (HFD)

NFκB is a transcription factor regulating many function of the vessel wall. In the normal condition , NFκB is revealed diffuse cytoplasmic expressionsuggesting that the system is inactive. The presence of activation NFκB provide a potential pathway for the rapid transcriptional of a variety of genes encoding cytokines, growth factors, adhesion molecules and procoagulatory factors. It is likely to play an important role in chronic inflamatory disease involved atherosclerosis. There are many stimuli with the potential to active NFκB, including hyperlipidemia. We used 24 mice which was divided in 6 groups. The HFD given by et libitum procedure during 2, 4, and 6 months. The parameters in this study were the amount of NFKB activation ,H2O2 as ROS and VCAM-1 as a product of NFKB activation. H2O2 colorimetryc assay performed directly using Anti Rat H2O2 ELISA Kit. The NFKB and VCAM-1 detection obtained from aorta mice, measured by ELISA kit and imunohistochemistry. There was a significant difference activation of H2O2, NFKB and VCAM-1 level at induce HFD after 2, 4 and 6 months. It suggest that HFD induce ROS formation and increase the activation of NFKB as one of atherosclerosis marker that caused by hyperlipidemia as classical atheroschlerosis risk factor.

The Corporate Integration of Highly Skilled Professionals - A Social Capital Perspective

Not with standing the importance of foreign highly skilled professionals for host economies, there is a paucity of research studies investigating the role of the corporate social context during the integration process. This research aims to address this paucity by exploring the role of social capital in the integration of foreign health professionals. It does so by using a qualitative research approach. In this pilot study the hospital sector forms this study-s sample and interviews were conducted with HR managers, foreign health professionals and external HR consultants. It was found that most of the participating hospitals had not established specific HR practices and had only partly linked the development of organisational social capital with a successful integration process. This research contributes, for example, to the HR literature on the integration of self-initiated expatriates by analysing the role of HRM in generating organisational social capital needed for a successful integration process.

Hot Workability of High Strength Low Alloy Steels

The hot deformation behavior of high strength low alloy (HSLA) steels with different chemical compositions under hot working conditions in the temperature range of 900 to 1100℃ and strain rate range from 0.1 to 10 s-1 has been studied by performing a series of hot compression tests. The dynamic materials model has been employed for developing the processing maps, which show variation of the efficiency of power dissipation with temperature and strain rate. Also the Kumar-s model has been used for developing the instability map, which shows variation of the instability for plastic deformation with temperature and strain rate. The efficiency of power dissipation increased with decreasing strain rate and increasing temperature in the steel with higher Cr and Ti content. High efficiency of power dissipation over 20 % was obtained at a finite strain level of 0.1 under the conditions of strain rate lower than 1 s-1 and temperature higher than 1050 ℃ . Plastic instability was expected in the regime of temperatures lower than 1000 ℃ and strain rate lower than 0.3 s-1. Steel with lower Cr and Ti contents showed high efficiency of power dissipation at higher strain rate and lower temperature conditions.

Injection Forging of Splines Using Numerical and Experimental Study

Injection forging is a Nett-shape manufacturing process in which one or two punches move axially causing a radial flow into a die cavity in a form which is prescribed by the exitgeometry, such as pulley, flanges, gears and splines on a shaft. This paper presents an experimental and numerical study of the injection forging of splines in terms of load requirement and material flow. Three dimensional finite element analyses are used to investigate the effect of some important parameters in this process. The experiment has been carried out using solid commercial lead billets with two different billet diameters and four different dies.