About Analysis and Modelling of the Open Message Switching System

The modern queueing theory is one of the powerful tools for a quantitative and qualitative analysis of communication systems, computer networks, transportation systems, and many other technical systems. The paper is designated to the analysis of queueing systems, arising in the networks theory and communications theory (called open queueing network). The authors of this research in the sphere of queueing theory present the theorem about the law of the iterated logarithm (LIL) for the queue length of a customers in open queueing network and its application to the mathematical model of the open message switching system.

Towards Modeling for Crashes A Low-Cost Adaptive Methodology for Karachi

The aim of this paper is to discuss a low-cost methodology that can predict traffic flow conflicts and quantitatively rank crash expectancies (based on relative probability) for various traffic facilities. This paper focuses on the application of statistical distributions to model traffic flow and Monte Carlo techniques to simulate traffic and discusses how to create a tool in order to predict the possibility of a traffic crash. A low-cost data collection methodology has been discussed for the heterogeneous traffic flow that exists and a GIS platform has been proposed to thematically represent traffic flow from simulations and the probability of a crash. Furthermore, discussions have been made to reflect the dynamism of the model in reference to its adaptability, adequacy, economy, and efficiency to ensure adoption.

Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features

This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.

Information Delivery and Advanced Traffic Information Systems in Istanbul

In this paper, we focused primarily on Istanbul data that is gathered by using intelligent transportation systems (ITS), and considered the developments in traffic information delivery and future applications that are being planned for implementation. Since traffic congestion is increasing and travel times are becoming less consistent and less predictable, traffic information delivery has become a critical issue. Considering the fuel consumption and wasted time in traffic, advanced traffic information systems are becoming increasingly valuable which enables travelers to plan their trips more accurately and easily.

Integrated Subset Split for Balancing Network Utilization and Quality of Routing

The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.

Hybrid Association Control Scheme and Load Balancing in Wireless LANs

This paper presents a hybrid association control scheme that can maintain load balancing among access points in the wireless LANs and can satisfy the quality of service requirements of the multimedia traffic applications. The proposed model is mathematically described as a linear programming model. Simulation study and analysis were conducted in order to demonstrate the performance of the proposed hybrid load balancing and association control scheme. Simulation results shows that the proposed scheme outperforms the other schemes in term of the percentage of blocking and the quality of the data transfer rate providing to the multimedia and real-time applications.

A New Scheduling Algorithm Based on Traffic Classification Using Imprecise Computation

Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms have been proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the difference of traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may be incurred for real-time flows. In this paper, it is proposed a scheduling algorithm that takes traffic types of flows into consideration when scheduling packets and also it is provided scheduling flexibility by trading off video quality to meet the playback deadline.

Three Dimensional Analysis of Pollution Dispersion in Street Canyon

Three dimensional simulations are carried out to estimate the effect of wind direction, wind speed and geometry on the flow and dispersion of vehicular pollutant in a street canyon. The pollutant sources are motor vehicles passing between the two buildings. Suitable emission factors for petrol and diesel vehicles at varying vehicle speed are used for the estimation of the rate of emission from the streets. The dispersion of automobile pollutant released from the street is simulated by introducing vehicular emission source term as a fixed-flux boundary condition at the ground level over the road. The emission source term is suitably calculated by adopting emission factors from literature for varying conditions of street traffic. It is observed that increase in wind angle disturbs the symmetric pattern of pollution distribution along the street length. The concentration increases in the far end of the street as compared to the near end.

Importance of the Green Belts to Reduce Noise Pollution and Determination of Roadside Noise Reduction Effectiveness of Bushes in Konya, Turkey

The impact of noise upon live quality has become an important aspect to make both urban and environmental policythroughout Europe and in Turkey. Concern over the quality of urban environments, including noise levels and declining quality of green space, is over the past decade with increasing emphasis on designing livable and sustainable communities. According to the World Health Organization, noise pollution is the third most hazardous environmental type of pollution which proceeded by only air (gas emission) and water pollution. The research carried out in two phases, the first stage of the research noise and plant types providing the suction of noise was evaluated through literature study and at the second stage, definite types (Juniperus horizontalis L., Spirea vanhouetti Briot., Cotoneaster dammerii C.K., Berberis thunbergii D.C., Pyracantha coccinea M. etc.) were selected for the city of Konya. Trials were conducted on the highway of Konya. The biggest value of noise reduction was 6.3 dB(A), 4.9 dB(A), 6.2 dB(A) value with compared to the control which includes the group that formed by the bushes at the distance of 7m, 11m, 20m from the source and 5m, 9m, 20m of plant width, respectively. In this paper, definitions regarding to noise and its sources were made and the precautions were taken against to noise that mentioned earlier with the adverse effects of noise. Plantation design approaches and suggestions concerning to the diversity to be used, which are peculiar to roadside, were developed to discuss the role and the function of plant material to reduce the noise of the traffic.

Analysis of Impact of Land Use Regulations against Urban Spatial Structure - Centering around Shiheung City

In this paper, we analyzed the pattern of urban spatial structure of Siheung City that had been divided into two parts and presented alternative plans in order to get rid of these phenomena. Concerning patterns of urban spatial structure, we examined it through means of analyzing status of land use, population density and distribution of residence, status of distribution of main facilities, medical facilities, status of distribution of cultural facilities, distribution of land prices and traffic volume trends. The results of study revealed that status of facilities distribution and distribution of land prices, etc. were bisected by the surrounding area of former municipal office and the district of Sihwa, which were both regarded as one apex of the city divide, forming a duo-centric city. In order to get rid of this problem concerned with urban spatial structure that has been bisected, it is required that measures in order to expand facilities in Siheung City should be taken.

Traffic Signs

Road signs are the elements of roads with a lot of influence in driver-s behavior. So that signals can fulfill its function, they must overcome visibility and durability requirements, particularly needed at night, when the coefficient of retroreflection becomes a decisive factor in ensuring road safety. Accepting that the visibility of the signage has implications for people-s safety, we understand the importance to fulfill its function: to foster the highest standards of service and safety in drivers. The usual conditions of perception of any sign are determined by: age of the driver, reflective material, luminosity, vehicle speed and emplacement. In this way, this paper evaluates the different signals to increase the safety road.

Measuring Heterogeneous Traffic Density

Traffic Density provides an indication of the level of service being provided to the road users. Hence, there is a need to study the traffic flow characteristics with specific reference to density in detail. When the length and speed of the vehicles in a traffic stream vary significantly, the concept of occupancy, rather than density, is more appropriate to describe traffic concentration. When the concept of occupancy is applied to heterogeneous traffic condition, it is necessary to consider the area of the road space and the area of the vehicles as the bases. Hence, a new concept named, 'area-occupancy' is proposed here. It has been found that the estimated area-occupancy gives consistent values irrespective of change in traffic composition.

Burstiness Reduction of a Doubly Stochastic AR-Modeled Uniform Activity VBR Video

Stochastic modeling of network traffic is an area of significant research activity for current and future broadband communication networks. Multimedia traffic is statistically characterized by a bursty variable bit rate (VBR) profile. In this paper, we develop an improved model for uniform activity level video sources in ATM using a doubly stochastic autoregressive model driven by an underlying spatial point process. We then examine a number of burstiness metrics such as the peak-to-average ratio (PAR), the temporal autocovariance function (ACF) and the traffic measurements histogram. We found that the former measure is most suitable for capturing the burstiness of single scene video traffic. In the last phase of this work, we analyse statistical multiplexing of several constant scene video sources. This proved, expectedly, to be advantageous with respect to reducing the burstiness of the traffic, as long as the sources are statistically independent. We observed that the burstiness was rapidly diminishing, with the largest gain occuring when only around 5 sources are multiplexed. The novel model used in this paper for characterizing uniform activity video was thus found to be an accurate model.

Restricted Pedestrian Flow Performance Measures during Egress from a Complex Facility

In this paper, we use an M/G/C/C state dependent queuing model within a complex network topology to determine the different performance measures for pedestrian traffic flow. The occupants in this network topology need to go through some source corridors, from which they can choose their suitable exiting corridors. The performance measures were calculated using arrival rates that maximize the throughputs of source corridors. In order to increase the throughput of the network, the result indicates that the flow direction of pedestrian through the corridors has to be restricted and the arrival rates to the source corridor need to be controlled.

Online Web Service based Solution for Urban Traffic Management

In this article, we present a web server based solution for implementing a system for intelligent navigation. In this solution we use real time collected data and traffic history to establish the best route for navigation. This is a low cost solution that is easily to implement and extend. There is no need any infrastructure at road network level except only a device that collect data about traffic in key road crossing. The presented solution creates a strong base for traffic pursuit and offers an infrastructure for navigation applications.

Software Reengineering Tool for Traffic Accident Data

In today-s hip hop world where everyone is running short of time and works hap hazardly,the similar scene is common on the roads while in traffic.To do away with the fatal consequences of such speedy traffics on rushy lanes, a software to analyse and keep account of the traffic and subsequent conjestion is being used in the developed countries. This software has being implemented and used with the help of a suppprt tool called Critical Analysis Reporting Environment.There has been two existing versions of this tool.The current research paper involves examining the issues and probles while using these two practically. Further a hybrid architecture is proposed for the same that retains the quality and performance of both and is better in terms of coupling of components , maintainence and many other features.

Load Balancing in Heterogeneous P2P Systems using Mobile Agents

Use of the Internet and the World-Wide-Web (WWW) has become widespread in recent years and mobile agent technology has proliferated at an equally rapid rate. In this scenario load balancing becomes important for P2P systems. Beside P2P systems can be highly heterogeneous, i.e., they may consists of peers that range from old desktops to powerful servers connected to internet through high-bandwidth lines. There are various loads balancing policies came into picture. Primitive one is Message Passing Interface (MPI). Its wide availability and portability make it an attractive choice; however the communication requirements are sometimes inefficient when implementing the primitives provided by MPI. In this scenario we use the concept of mobile agent because Mobile agent (MA) based approach have the merits of high flexibility, efficiency, low network traffic, less communication latency as well as highly asynchronous. In this study we present decentralized load balancing scheme using mobile agent technology in which when a node is overloaded, task migrates to less utilized nodes so as to share the workload. However, the decision of which nodes receive migrating task is made in real-time by defining certain load balancing policies. These policies are executed on PMADE (A Platform for Mobile Agent Distribution and Execution) in decentralized manner using JuxtaNet and various load balancing metrics are discussed.

QoS Routing in Wired Sensor Networks with Partial Updates

QoS routing is an important component of Traffic Engineering in networks that provide QoS guarantees. QoS routing is dependent on the link state information which is typically flooded across the network. This affects both the quality of the routing and the utilization of the network resources. In this paper, we examine establishing QoS routes with partial state updates in wired sensor networks.

Enhanced QoS Mechanisms for IEEE 802.11e Wireless Networks

The quality-of-service (QoS) support for wireless LANs has been a hot research topic during the past few years. In this paper, two QoS provisioning mechanisms are proposed for the employment in 802.11e EDCA MAC scheme. First, the proposed call admission control mechanism can not only guarantee the QoS for the higher priority existing connections but also provide the minimum reserved bandwidth for traffic flows with lower priority. In addition, the adaptive contention window adjustment mechanism can adjust the maximum and minimum contention window size dynamically according to the existing connection number of each AC. The collision probability as well as the packet delay will thus be reduced effectively. Performance results via simulations have revealed the enhanced QoS property achieved by employing these two mechanisms.

Intelligent BRT in Tehran

an intelligent BRT system is necessary when communities looking for new ways to use high capacity rapid transit at a reduced cost.This paper will describe the intelligent control system that works with Datacenter. With the help of GPS system, the data center can monitor the situation of each bus and bus station. Through RFID technology, bus station and traffic light can transfer data with bus and by Wimax communication technology all of parts can talk together; data center learns all information about the location of bus, the arrival of bus in each station and the number of passengers in station and bus.Finally, the paper presents the case study of those theories in Tehran BRT.