A Scheme of Model Verification of the Concurrent Discrete Wavelet Transform (DWT) for Image Compression

The scientific community has invested a great deal of effort in the fields of discrete wavelet transform in the last few decades. Discrete wavelet transform (DWT) associated with the vector quantization has been proved to be a very useful tool for the compression of image. However, the DWT is very computationally intensive process requiring innovative and computationally efficient method to obtain the image compression. The concurrent transformation of the image can be an important solution to this problem. This paper proposes a model of concurrent DWT for image compression. Additionally, the formal verification of the model has also been performed. Here the Symbolic Model Verifier (SMV) has been used as the formal verification tool. The system has been modeled in SMV and some properties have been verified formally.

Evaluation of Solid Phase Micro-extraction with Standard Testing Method for Formaldehyde Determination

In this study, solid phase micro-extraction (SPME) was optimized to improve the sensitivity and accuracy in formaldehyde determination for plywood panels. Further work has been carried out to compare the newly developed technique with existing method which reacts formaldehyde collected in desiccators with acetyl acetone reagent (DC-AA). In SPME, formaldehyde was first derivatized with O-(2,3,4,5,6 pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA) and analysis was then performed by gas chromatography in combination with mass spectrometry (GC-MS). SPME data subjected to various wood species gave satisfactory results, with relative standard deviations (RSDs) obtained in the range of 3.1-10.3%. It was also well correlated with DC values, giving a correlation coefficient, RSQ, of 0.959. The quantitative analysis of formaldehyde by SPME was an alternative in wood industry with great potential

A New Kind Methodology for Controlling Complex Systems

Control of complex systems is one of important files in complex systems, that not only relies on the essence of complex systems which is denoted by the core concept – emergence, but also embodies the elementary concept in control theory. Aiming at giving a clear and self-contained description of emergence, the paper introduces a formal way to completely describe the formation and dynamics of emergence in complex systems. Consequently, this paper indicates the Emergence-Oriented Control methodology that contains three kinds of basic control schemes: the direct control, the system re-structuring and the system calibration. As a universal ontology, the Emergence-Oriented Control provides a powerful tool for identifying and resolving control problems in specific systems.

A Comprehensive and Integrated Framework for Formal Specification of Concurrent Systems

Due to important issues, such as deadlock, starvation, communication, non-deterministic behavior and synchronization, concurrent systems are very complex, sensitive, and error-prone. Thus ensuring reliability and accuracy of these systems is very essential. Therefore, there has been a big interest in the formal specification of concurrent programs in recent years. Nevertheless, some features of concurrent systems, such as dynamic process creation, scheduling and starvation have not been specified formally yet. Also, some other features have been specified partially and/or have been described using a combination of several different formalisms and methods whose integration needs too much effort. In other words, a comprehensive and integrated specification that could cover all aspects of concurrent systems has not been provided yet. Thus, this paper makes two major contributions: firstly, it provides a comprehensive formal framework to specify all well-known features of concurrent systems. Secondly, it provides an integrated specification of these features by using just a single formal notation, i.e., the Z language.

A Computational Stochastic Modeling Formalism for Biological Networks

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Cyber Crime in Uganda: Myth or Reality?

There is a general feeling that Internet crime is an advanced type of crime that has not yet infiltrated developing countries like Uganda. The carefree nature of the Internet in which anybody publishes anything at anytime poses a serious security threat for any nation. Unfortunately, there are no formal records about this type of crime for Uganda. Could this mean that it does not exist there? The author conducted an independent research to ascertain whether cyber crimes have affected people in Uganda and if so, to discover where they are reported. This paper highlights the findings.

Target Tracking in Sensor Networks: A Distributed Constraint Satisfaction Approach

In distributed resource allocation a set of agents must assign their resources to a set of tasks. This problem arises in many real-world domains such as distributed sensor networks, disaster rescue, hospital scheduling and others. Despite the variety of approaches proposed for distributed resource allocation, a systematic formalization of the problem, explaining the different sources of difficulties, and a formal explanation of the strengths and limitations of key approaches is missing. We take a step towards this goal by using a formalization of distributed resource allocation that represents both dynamic and distributed aspects of the problem. In this paper we present a new idea for target tracking in sensor networks and compare it with previous approaches. The central contribution of the paper is a generalized mapping from distributed resource allocation to DDCSP. This mapping is proven to correctly perform resource allocation problems of specific difficulty. This theoretical result is verified in practice by a simulation on a realworld distributed sensor network.

What Managers Think of Informal Networks and Knowledge Sharing by Means of Personal Networking?

The importance of nurturing, accumulating, and efficiently deploying knowledge resources through formal structures and organisational mechanisms is well understood. Recent trends in knowledge management (KM) highlight that the effective creation and transfer of knowledge can also rely upon extra-organisational channels, such as, informal networks. The perception exists that the role of informal networks in knowledge creation and performance has been underestimated in the organisational context. Literature indicates that many managers fail to comprehend and successfully exploit the potential role of informal networks to create value for their organisations. This paper investigates: 1) whether managers share work-specific knowledge with informal contacts within and outside organisational boundaries; and 2) what do they think is the importance of this knowledge collaboration in their learning and work outcomes.

An Empirical Validation of the Linear- Hyperbolic Approximation of the I-V Characteristic of a Solar Cell Generator

An empirical linearly-hyperbolic approximation of the I - V characteristic of a solar cell is presented. This approximation is based on hyperbolic dependence of a current of p-n junctions on voltage for large currents. Such empirical approximation is compared with the early proposed formal linearly-hyperbolic approximation of a solar cell. The expressions defining laws of change of parameters of formal approximation at change of a photo current of family of characteristics are received. It allows simplifying a finding of parameters of approximation on actual curves, to specify their values. Analytical calculation of load regime for linearly - hyperbolic model leads to quadratic equation. Also, this model allows to define soundly a deviation from the maximum power regime and to compare efficiency of regimes of solar cells with different parameters.

Analysing Environmental Risks and Perceptions of Risks to Assess Health and Well-being in Poor Areas of Abidjan

This study analyzed environmental health risks and people-s perceptions of risks related to waste management in poor settlements of Abidjan, to develop integrated solutions for health and well-being improvement. The trans-disciplinary approach used relied on remote sensing, a geographic information system (GIS), qualitative and quantitative methods such as interviews and a household survey (n=1800). Mitigating strategies were then developed using an integrated participatory stakeholder workshop. Waste management deficiencies resulting in lack of drainage and uncontrolled solid and liquid waste disposal in the poor settlements lead to severe environmental health risks. Health problems were caused by direct handling of waste, as well as through broader exposure of the population. People in poor settlements had little awareness of health risks related to waste management in their community and a general lack of knowledge pertaining to sanitation systems. This unfortunate combination was the key determinant affecting the health and vulnerability. For example, an increased prevalence of malaria (47.1%) and diarrhoea (19.2%) was observed in the rainy season when compared to the dry season (32.3% and 14.3%). Concerted and adapted solutions that suited all the stakeholders concerned were developed in a participatory workshop to allow for improvement of health and well-being.

Environmental Management System According to ISO 14001 as a Source of Eco-Innovations in Enterprises - A Case of Podkarpackie Voivodeship

This paper presents results of empirical studies that were conducted in enterprises from Podkarpackie Voivodeship (Poland). It shows the experiences of those enterprises resulting from implementing and improving the eco-innovativeness management that is formal Environmental Management System (EMS). This study shows the expected and obtained internal benefits which are the effects of a functioning EMS. The aim of this paper is to determine whether the information included in international theoretical studies concerning the benefits of implementing, functioning and improving formal EMS (which is based on the international standard ISO 14001) are confirmed by the effects of the enterprises- activities.

Educational Quiz Board Games for Adaptive E-Learning

Internet computer games turn to be more and more attractive within the context of technology enhanced learning. Educational games as quizzes and quests have gained significant success in appealing and motivating learners to study in a different way and provoke steadily increasing interest in new methods of application. Board games are specific group of games where figures are manipulated in competitive play mode with race conditions on a surface according predefined rules. The article represents a new, formalized model of traditional quizzes, puzzles and quests shown as multimedia board games which facilitates the construction process of such games. Authors provide different examples of quizzes and their models in order to demonstrate the model is quite general and does support not only quizzes, mazes and quests but also any set of teaching activities. The execution process of such models is explained and, as well, how they can be useful for creation and delivery of adaptive e-learning courseware.

Instance-Based Ontology Matching Using Different Kinds of Formalism

Ontology Matching is a task needed in various applica-tions, for example for comparison or merging purposes. In literature,many algorithms solving the matching problem can be found, butmost of them do not consider instances at all. Mappings are deter-mined by calculating the string-similarity of labels, by recognizinglinguistic word relations (synonyms, subsumptions etc.) or by ana-lyzing the (graph) structure. Due to the facts that instances are oftenmodeled within the ontology and that the set of instances describesthe meaning of the concepts better than their meta information,instances should definitely be incorporated into the matching process.In this paper several novel instance-based matching algorithms arepresented which enhance the quality of matching results obtainedwith common concept-based methods. Different kinds of formalismsare use to classify concepts on account of their instances and finallyto compare the concepts directly.KeywordsInstances, Ontology Matching, Semantic Web

Modelling Multiagent Systems

We propose a formal framework for the specification of the behavior of a system of agents, as well as those of the constituting agents. This framework allows us to model each agent-s effectoric capability including its interactions with the other agents. We also provide an algorithm based on Milner-s "observation equivalence" to derive an agent-s perception of its task domain situations from its effectoric capability, and use "system computations" to model the coordinated efforts of the agents in the system . Formal definitions of the concept of "behavior equivalence" of two agents and that of system computations equivalence for an agent are also provided.

Random Oracle Model of Information Hiding System

Random Oracle Model (ROM) is an effective method for measuring the practical security of cryptograph. In this paper, we try to use it into information hiding system (IHS). Because IHS has its own properties, the ROM must be modified if it is used into IHS. Firstly, we fully discuss why and how to modify each part of ROM respectively. The main changes include: 1) Divide the attacks that IHS may be suffered into two phases and divide the attacks of each phase into several kinds. 2) Distinguish Oracles and Black-boxes clearly. 3) Define Oracle and four Black-boxes that IHS used. 4) Propose the formalized adversary model. And 5) Give the definition of judge. Secondly, based on ROM of IHS, the security against known original cover attack (KOCA-KOCA-security) is defined. Then, we give an actual information hiding scheme and prove that it is KOCA-KOCA-secure. Finally, we conclude the paper and propose the open problems of further research.

Adsorption Capacity of Chitosan Beads in Toxic Solutions

The efficiency of chitosan beads processed from 4 marine animal shells; white leg shrimp (Litopenaeus vannamei), mud crab (Scylla sp.), horseshoe crab (Carcinoscorpius rotundicauda), and cuttlefish bone (Sepia sp.), for the adsorption experiments of ammonia and formaldehyde were investigated. The porosities of chitosan from the shells looked like beads were distinctly examined under SEM. The original pores of those shells on the surface areas compose of evenly fine pores. The shell beads of cuttlefish bone and horseshoe crab show the larger probably even porosity, while on those white leg shrimp and mud crab contain various large and fine pores. The best adsorption at pH 9 in 18 mg/l ammonia at 2 hours yield on cuttlefish bone, horseshoe crab, mud crab and white leg shrimp with the average percent of 59.12, 51.45, 45.66 and 43.52, respectively. Within 30 minutes the formaldehyde absorbers (at pH 5 in 8 μg/ml) revealed 46.27, 26.56, and 18.04 percent capacities in cuttlefish bone, mud crab and white leg shrimp beads; while 22.44 percent in the horseshoe crab at pH 7. The adsorption capacities and the amounts of beads showed a positive correlation. The adsorption capacity relationship between pH and the gas concentrations were affected by these qualities of chitosan beads.

Biologically Inspired Artificial Neural Cortex Architecture and its Formalism

The paper attempts to elucidate the columnar structure of the cortex by answering the following questions. (1) Why the cortical neurons with similar interests tend to be vertically arrayed forming what is known as cortical columns? (2) How to describe the cortex as a whole in concise mathematical terms? (3) How to design efficient digital models of the cortex?

Incentives to Introduce Environmental Management System in the Context of Building an eco-Innovative Potential – A Case of Podkarpackie Voivodeship

This paper shows the results of empirical research. It presents experiences of Polish companies from the Podkarpackie voivodeship connected with implementing EMS according to the requirements of the ISO 14001 international standard. The incentives to introduce and certify organizational eco-innovation, which formal EMSs are treated as, are presented in this paper.

Development of A Meta Description Language for Software/Hardware Cooperative Design and Verification for Model-Checking Systems

Model-checking tools such as Symbolic Model Verifier (SMV) and NuSMV are available for checking hardware designs. These tools can automatically check the formal legitimacy of a design. However, NuSMV is too low level for describing a complete hardware design. It is therefore necessary to translate the system definition, as designed in a language such as Verilog or VHDL, into a language such as NuSMV for validation. In this paper, we present a meta hardware description language, Melasy, that contains a code generator for existing hardware description languages (HDLs) and languages for model checking that solve this problem.

A Computer Proven Application of the Discrete Logarithm Problem

In this paper we analyze the application of a formal proof system to the discrete logarithm problem used in publickey cryptography. That means, we explore a computer verification of the ElGamal encryption scheme with the formal proof system Isabelle/HOL. More precisely, the functional correctness of this algorithm is formally verified with computer support. Besides, we present a formalization of the DSA signature scheme in the Isabelle/HOL system. We show that this scheme is correct what is a necessary condition for the usefulness of any cryptographic signature scheme.