Implementation of MPPT Algorithm for Grid Connected PV Module with IC and P&O Method

In recent years, the use of renewable energy resources instead of pollutant fossil fuels and other forms has increased. Photovoltaic generation is becoming increasingly important as a renewable resource since it does not cause in fuel costs, pollution, maintenance, and emitting noise compared with other alternatives used in power applications. In this paper, Perturb and Observe and Incremental Conductance methods are used to improve energy conversion efficiency under different environmental conditions. PI controllers are used to control easily DC-link voltage, active and reactive currents. The whole system is simulated under standard climatic conditions (1000 W/m2, 250C) in MATLAB and the irradiance is varied from 1000 W/m2 to 300 W/m2. The use of PI controller makes it easy to directly control the power of the grid connected PV system. Finally the validity of the system will be verified through the simulations in MATLAB/Simulink environment.

Correlation of the Rate of Imperfect Competition and Profit in Banking Markets

This article aims to assess the evolution of imperfect competition in selected banking markets, in particular in the banking markets of Slovakia, Poland, Hungary, Slovenia and Croatia. Another objective is to assess the evolution of the relationship of imperfect competition and profit development in the banking markets. The article first provides an overview of literature on the topic. It then measures the degree of imperfect competition in individual markets using the Herfindahl-Hirschman Index. The commonly used indicator of total assets was chosen as an indicator. Based on this measurement, the individual banking sectors are categorized into theoretical definitions of the various types of imperfect competition - namely all surveyed banking sectors falling within the theoretical definition of monopolistic competition. Subsequently, using correlation analysis, i.e., the Pearson correlation coefficient, or the Spearman correlation coefficient, the connection between the evolution of imperfect competition and the development of the gross profit on selected banking markets was surveyed. It was found that with the exception of the banking market in Slovenia, where there is a positive correlation; there is no correlation between the evolution of imperfect competition and profit development in the selected markets. This means a recommendation for the regulators that it is not appropriate to rationalize a higher degree of regulation in granting banking licenses on the size of the profits attained in the banking market, as the relationship between the degree of concentration in the banking market and the amount of profit according to our measurements does not exist.

HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier

Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.

Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin

Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.

A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service

Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.

Mechanical Characterization and Impact Study on the Environment of Raw Sediments and Sediments Dehydrated by Addition of Polymer

Large volumes of river sediments are dredged each year in Europe in order to maintain harbour activities and prevent floods. The management of this sediment has become increasingly complex. Several European projects were implemented to find environmentally sound solutions for these materials. The main objective of this study is to show the ability of river sediment to be used in road. Since sediments contain a high amount of water, then a dehydrating treatment by addition of the flocculation aid has been used. Firstly, a lot of physical characteristics are measured and discussed for a better identification of the raw sediment and this dehydrated sediment by addition the flocculation aid. The identified parameters are, for example, the initial water content, the density, the organic matter content, the grain size distribution, the liquid limit and plastic limit and geotechnical parameters. The environmental impacts of the used material were evaluated. The results obtained show that there is a slight change on the physical-chemical and geotechnical characteristics of sediment after dehydration by the addition of polymer. However, these sediments cannot be used in road construction.

An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging

In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.

Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil

The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.

An Analysis of Innovative Cloud Model as Bridging the Gap between Physical and Virtualized Business Environments: The Customer Perspective

This study aims to investigate and explore the underlying causes of security concerns of customers emerged when WHSmith transformed its physical system to virtualized business model through NetSuite. NetSuite is essentially fully integrated software which helps transforming the physical system to virtualized business model. Modern organisations are moving away from traditional business models to cloud based models and consequently it is expected to have a better, secure and innovative environment for customers. The vital issue of the modern age race is the security when transforming virtualized through cloud based models and designers of interactive systems often misunderstand privacy and even often ignore it, thus causing concerns for users. The content analysis approach is being used to collect the qualitative data from 120 online bloggers including TRUSTPILOT. The results and finding provide useful new insights into the nature and form of security concerns of online users after they have used the WHSmith services offered online through their website. Findings have theoretical as well as practical implications for the successful adoption of cloud computing Business-to-Business model and similar systems.

A Review on Concrete Structures in Fire

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

The Study of Implications on Modern Businesses Performances by Digital Communities: Case of Data Leak

This study aims to investigate the impact of data leak of M&S customers on digital communities. Modern businesses are using digital communities as an important public relations tool for marketing purposes. This form of communication helps companies to build better relationship with their customers which also act as another source of information. The communication between the customers and the organizations is not regulated so users may post positive and negative comments. There are new platforms being developed on a daily basis and it is very crucial for the businesses to not only get themselves familiar with those but also know how to reach their existing and perspective consumers. The driving force of marketing and communication in modern businesses is the digital communities and these are continuously increasing and developing. This phenomenon is changing the way marketing is conducted. The current research has discussed the implications on M&S business performance since the data was exploited on digital communities; users contacted M&S and raised the security concerns. M&S closed down its website for few hours to try to resolve the issue. The next day M&S made a public apology about this incidence. This information was proliferated on various digital communities and it has impacted negatively on M&S brand name, sales and customers. The content analysis approach is being used to collect qualitative data from 100 digital bloggers including social media communities such as Facebook and Twitter. The results and finding provide useful new insights into the nature and form of security concerns of digital users. Findings have theoretical and practical implications. This research will showcase a large corporation utilizing various digital community platforms and can serve as a model for future organizations.

Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive

In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.

Biodiversity of Plants Rhizosphere and Rhizoplane Bacteria in the Presence of Petroleum Hydrocarbons

Following plants-barley (Hordeum sativum), alfalfa (Medicago sativa), grass mixture (red fescue-75%, long-term ryegrass - 20% Kentucky bluegrass - 10%), oilseed rape (Brassica napus biennis), resistant to growth in the contaminated soil with oil content of 15.8 g / kg 25.9 g / kg soil were used. Analysis of the population showed that the oil pollution reduces the number of bacteria in the rhizosphere and rhizoplane of plants and enhances the amount of spore-forming bacteria and saprotrophic micromycetes. It was shown that regardless of the plant, dominance of Pseudomonas and Bacillus genera bacteria was typical for the rhizosphere and rhizoplane of plants. The frequency of bacteria of these genera was more than 60%. Oil pollution changes the ratio of occurrence of various types of bacteria in the rhizosphere and rhizoplane of plants. Besides the Pseudomonas and Bacillus genera, in the presence of hydrocarbons in the root zone of plants dominant and most typical were the representatives of the Mycobacterium and Rhodococcus genera. Together the number was between 62% to 72%.

Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell

Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.

Digital Preservation in Nigeria Universities Libraries: A Comparison between University of Nigeria Nsukka and Ahmadu Bello University Zaria

This study examined the digital preservation in Nigeria university libraries. A comparison between the university of Nigeria Nsukka (UNN) and Ahmadu Bello University Zaria (ABU, Zaria). The study utilized primary source of data obtained from two selected institution librarians. Finding revealed varying results in terms of skills acquired by librarians before and after digitization of the two institutions. The study reports that journals publication, text book, CD-ROMS, conference papers and proceedings, theses, dissertations and seminar papers are among the information resources available for digitization. The study further documents that copyright issue, power failure, and unavailability of needed materials are among the challenges facing the digitization of library of the institution. On the basis of the finding, the study concluded that digitization of library enhances efficiency in organization and retrieval of information services. The study therefore recommended that software should be upgraded with backup, training of the librarians on digital process, installation of antivirus and enhancement of technical collaboration between the library and MIS.

Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still

Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.

Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

The Application of Action Research to Integrate the Innovation in Learning Experience in a Design Course

This case study used the action research concept as a tool to integrate the innovation in a learning experience on a design course. The action research was investigated at Prince Sultan University, College of Engineering in the Interior Design and Architecture Department in January 2015, through the Higher Education Academy program. The action research was presented first with the definition of the research, leading to how it was used and how solutions were found. It concluded by showing that once the action research application in interior design and architecture were studied it was an effective tool to improve student’s learning, develop their practice in design courses, and it discussed the negative and positive issues that were encountered.