Opportunities of an Industrial City in the Leisure Tourism

The aim of the research is to investigate the forms of the demands of leisure tourism in a West-Hungarian industrial city, Győr. Today, Győr is still a traditional industrial city, its industry is mainly based on vehicle industry, but the role of tourism is increasing in the life of the city as well. Because of the industrial nature and the strong economy of the city, the ratio of business tourists is high. It can be stated that MICE tourism is dominating in Győr. Developments of the last decade can help the city with new tourism products to increase the leisure tourism. The new types of tourism – besides business tourism – can help the providers to increase the occupancy rates and the demand at the weekends. The research demonstrates the theoretical background of the topic, and it shows the present situation of the tourism in Győr with secondary data. The secondary research contains statistical data from the Hungarian Statistical Office and the city council, and it is based on the providers’ data. The next part of the paper shows the potential types of leisure tourism with the help of primary research. The primary research contains the results of an online questionnaire with a sample of 1000 potential customers. It is completed with 10 in-depth interviews with tourism experts, who explained their opinions about the opportunities of leisure tourism in Győr from the providers’ side. The online questionnaire was filled out in spring 2017 by customers, who have already stayed in Győr or plan to visit the city. At the same time in-depth interviews were made with hotel managers, head of touristic institutions and employees at the council. Based on the research it can be stated that the touristic supply of Győr allows the increase of the leisure tourism ratio in the city. Primarily, the cultural and health tourism show potential development, but the supply side of touristic services can be developed in order to increase the number of guest nights. The tourism marketing needs to be strengthened in the city, and a distinctive marketing activity - from other cities - is needed as well. To conclude, although Győr is an industrial city, it has a transforming industrial part, and tourism is also strongly present in its economy. Besides the leading role of business tourism, different types of leisure tourism have the opportunity to take place in the city.

Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors

The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.

Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures

Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.

Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant

In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.

Ethnobotanical Study on the Usage of Toxic Plants in Traditional Medicine in the City Center of Tlemcen, Algeria

Traditional medicine has been part of the Algerian culture for decades. In particular, the city of Tlemcen still retains practices based on phytotherapy to the present day, as this kind of medicine fulfills the needs of its followers among the local population. The toxic plants contain diverse natural substances which supplied a lot of medicine in the pharmaceutical industry. In order to explore new medicinal sources among toxic plants, an ethnobotanical study was carried out on the use of these plants by the population, at Emir Abdelkader Square of the city of Tlemcen, a rather busy place with a high number of traditional health practitioners and herbalists. This is a descriptive and transversal study aimed at estimating the frequency of using toxic plants among the studied population, for a period of 4 months. The information was collected, using self-anonymous questionnaires, and analyzed by the IBM SPSS Statistics software used for statistical analysis. A sample of 200 people, including 120 women and 80 men, were interviewed. The mean age was 41 ± 16 years. Among those questioned, 83.5% used plants; 8% of them used toxic plants and 35% used plants that can be toxic under certain conditions. Some improvements were observed in 88% of the cases where toxic plants were used. 80 medicinal plants, belonging to 36 botanical families, were listed, identified and classified. The most frequent indications for these plants were for respiratory diseases in 64.7% of cases, and for digestive disorders in 51.5% of cases. 11% of these plants are toxic, 26% could be toxic under certain conditions. Among toxics plants, the most common ones are Berberis vulgaris with 5.4%, indicated in the treatment of uterine fibroids and thyroid, Rhamnus alaternus with 4.8% for hepatic jaundice, Nerium oleander with 3% for hemorrhoids, Ruta chalepensis with 1.2%, indicated for digestive disorders and dysmenorrhea, and Viscum album with 1.2%, indicated for respiratory diseases. The most common plants that could be toxic are Mentha pulegium (15.6%), Eucalyptus globulus (11.4%), and Pimpinella anisum (10.2%). This study revealed interesting results on the use of toxic plants, which are likely to serve as a basis for further ethno-pharmacological investigations in order to get new drug sources.

Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min.  In addition, the optimum addition time of SP to mortar should be in this period.

Effect of Compressibility of Brake Friction Materials on Vibration Occurrence

Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.

Progressive Watershed Management Approaches in Iran

Expansionism and ever-increasing population menace all different resources worldwide. The issue, hence, is critical in developing countries like Iran where new technologies are rapidly luxuriated and unguardedly applied, resulting in unexpected outcomes. However, uncommon and comprehensive approaches are introduced to take all the different aspects involved into consideration. In the last decade, few approaches such as community-based, stakeholders-oriented, adaptive and ultimately integrated management, have emerged and are developing for efficient, Co-management or best management, economic and sustainable development and management of watershed resources in Iran. In the present paper, an attempt has been made to focus on state-of-the-art approaches for the management of watershed resources applied in Iran. The study has been then supported by reports of some case studies conducted throughout the country involving previously mentioned approaches. Scrutinizing results of the researches verified a progressive tendency of the managerial approaches in watershed management strategies leading to a general approaching balance situation. The approaches are firmly rooted in educational, research, executive, legal and policy-making sectors leading to some recuperation at different levels. However, there is a long way ahead to naturalize detrimental effects of unscientific, illegal and over exploitation of the watershed resources in Iran.

Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters

Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.

Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.

Photocatalytic Active Surface of LWSCC Architectural Concretes

Current trends in the building industry are oriented towards the reduction of maintenance costs and the ecological benefits of buildings or building materials. Surface treatment of building materials with photocatalytic active titanium dioxide added into concrete can offer a good solution in this context. Architectural concrete has one disadvantage – dust and fouling keep settling on its surface, diminishing its aesthetic value and increasing maintenance e costs. Concrete surface – silicate material with open porosity – fulfils the conditions of effective photocatalysis, in particular, the self-cleaning properties of surfaces. This modern material is advantageous in particular for direct finishing and architectural concrete applications. If photoactive titanium dioxide is part of the top layers of road concrete on busy roads and the facades of the buildings surrounding these roads, exhaust fumes can be degraded with the aid of sunshine; hence, environmental load will decrease. It is clear that options for removing pollutants like nitrogen oxides (NOx) must be found. Not only do these gases present a health risk, they also cause the degradation of the surfaces of concrete structures. The photocatalytic properties of titanium dioxide can in the long term contribute to the enhanced appearance of surface layers and eliminate harmful pollutants dispersed in the air, and facilitate the conversion of pollutants into less toxic forms (e.g., NOx to HNO3). This paper describes verification of the photocatalytic properties of titanium dioxide and presents the results of mechanical and physical tests on samples of architectural lightweight self-compacting concretes (LWSCC). The very essence of the use of LWSCC is their rheological ability to seep into otherwise extremely hard accessible or inaccessible construction areas, or sections thereof where concrete compacting will be a problem, or where vibration is completely excluded. They are also able to create a solid monolithic element with a large variety of shapes; the concrete will at the same meet the requirements of both chemical aggression and the influences of the surrounding environment. Due to their viscosity, LWSCCs are able to imprint the formwork elements into their structure and thus create high quality lightweight architectural concretes.

Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents

Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives. 

A Comparative Study of Indoor Radon Concentrations between Dwellings and Workplaces in the Ko Samui District, Surat Thani Province, Southern Thailand

The Ko Samui district of Surat Thani province is located in the high amounts of equivalent uranium in the ground surface that is the source of radon. Our research in the Ko Samui district aimed at comparing the indoor radon concentrations between dwellings and workplaces. Measurements of indoor radon concentrations were carried out in 46 dwellings and 127 workplaces, using CR-39 alpha-track detectors in closed-cup. A total of 173 detectors were distributed in 7 sub-districts. The detectors were placed in bedrooms of dwellings and workrooms of workplaces. All detectors were exposed to airborne radon for 90 days. After exposure, the alpha tracks were made visible by chemical etching before they were manually counted under an optical microscope. The track densities were assumed to be correlated with the radon concentration levels. We found that the radon concentrations could be well described by a log-normal distribution. Most concentrations (37%) were found in the range between 16 and 30 Bq.m-3. The radon concentrations in dwellings and workplaces varied from a minimum of 11 Bq.m-3 to a maximum of 305 Bq.m-3. The minimum (11 Bq.m-3) and maximum (305 Bq.m-3) values of indoor radon concentrations were found in a workplace and a dwelling, respectively. Only for four samples (3%), the indoor radon concentrations were found to be higher than the reference level recommended by the WHO (100 Bq.m-3). The overall geometric mean in the surveyed area was 32.6±1.65 Bq.m-3, which was lower than the worldwide average (39 Bq.m-3). The statistic comparison of the geometric mean indoor radon concentrations between dwellings and workplaces showed that the geometric mean in dwellings (46.0±1.55 Bq.m-3) was significantly higher than in workplaces (28.8±1.58 Bq.m-3) at the 0.05 level. Moreover, our study found that the majority of the bedrooms in dwellings had a closed atmosphere, resulting in poorer ventilation than in most of the workplaces that had access to air flow through open doors and windows at daytime. We consider this to be the main reason for the higher geometric mean indoor radon concentration in dwellings compared to workplaces.

Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach

Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.

Understanding Factors Influencing E-Government Implementation in Saudi Arabia from an Organizational Perspective

The purpose of this paper is to explore the organizational factors influencing the implementation of the e-government project within the public sector in Saudi Arabia. This project (also known as the Yesser programme) was established in Saudi Arabia in 2005 to control the e-government transformation process. The aims of the project are to provide a collaborative environment for government organizations to implement e-government and increase effectiveness and efficiency within the public sector. This paper sheds light on the organizational factors that have delayed implementation and achievement of the government’s vision and plans for Yesser. A qualitative approach was employed to understand those factors, by conducting a series of interviews with government officials for the data collection required. The analysis of the data uncovered seven organizational factors that are needed to advance implementation of the e-government project in Saudi Arabia and other similar states.

The Design Process of an Interactive Seat for Improving Workplace Productivity

Creative industries’ workers are becoming more prominent as countries move towards intellectual-based economies. Consequently, the nature and essence of the workplace needs to be reconfigured so that creativity and productivity can be better promoted at these spaces. Using a multidisciplinary approach and a user-centered methodology, combining product design, electronic engineering, software and human-computer interaction, we have designed and developed a new seat that uses embedded sensors and actuators to increase the overall well-being of its users, their productivity and their creativity. Our contribution focuses on the parameters that most affect the user’s work on these kinds of spaces, which are, according to our study, noise and temperature. We describe the design process for a new interactive seat targeted at improving workspace productivity.

Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics

Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.

Evaluation of Context Information for Intermittent Networks

The context aware adaptive routing protocol is presented for unicast communication in intermittently connected mobile ad hoc networks (MANETs). The selection of the node is done by the Kalman filter prediction theory and it also makes use of utility functions. The context aware adaptive routing is defined by spray and wait technique, but the time consumption in delivering the message is too high and also the resource wastage is more. In this paper, we describe the spray and focus routing scheme for avoiding the existing problems.

Development of Maintenance Schedule and Root Cause Analysis Based on Computerized Maintenance Management System for a Fertilizer Plant

This paper deals with development of Computerized Maintenance Management System (CMMS) for a fertilizer plant. The software is advanced, easy to use, less complex, less expensive and also less time consuming. It consists of number of modules like detailed information of equipment, maintenance procedures, work order and employees detail. The objectives of CMMS are to reduce overall downtime, overall yearly maintenance cost and occurrence of failures of the equipment and to get day-by-day maintenance plan and strategy. In this regard, the behavioral chart for urea prilling unit at Fertilizer plant has been developed in form of Root Cause Analysis (RCA). Besides this, a maintenance program has also been proposed and used for the purpose of maintenance planning of the urea prilling unit. The outcome of software has been consulted with the concerned plant individuals and found to be extremely favorable for improving the performance level of the concerned plant.