Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach

The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C6H5SO2NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO4) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH3C6H5SO2NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented.

Some Characteristics and Identification of Fungi Contaminated by Alkomos Cement Factory

Soil samples were collected from and around Alkomos cement factory, Alkomos town, Libya. Soil physiochemical properties were determined. In addition, olive leaves were scanned for their fungal content. This work can conclude that the results obtained for the examined physiochemical characteristics of soil in the area studied prove that cement dust from the Alkomos cement factory in Libya has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These characteristics were found to be higher than those in similar soils from the same area. The increment of soil pH in the same area may be a result of precipitation of cement dust over the years. Different responses were found in each season and each site. For instance, the dominance of fungi of soil and leaves was lowest at 100 m from the factory and the evenness and diversity increased at this site compared to the control area and 250 m from the factory.

Comparative Growth Rates of Treculia africana Decne: Embryo in Varied Strengths of Murashige and Skoog Basal Medium

This study provides a regeneration protocol for Treculia africana Decne (an endangered plant) through embryo culture. Mature zygotic embryos of T. africana were excised from the seeds aseptically and cultured on varied strengths (full, half and quarter) of Murashige and Skoog (MS) basal medium supplemented. All treatments experienced 100±0.00 percent sprouting except for half and quarter strengths. Plantlets in MS full strength had the highest fresh weight, leaf area, and longest shoot length when compared to other treatments. All explants in full, half, quarter strengths and control had the same number of leaves and sprout rate. Between the treatments, there was a significant difference (P>0.05) in their effect on the length of shoot and root, number of adventitious root, leaf area, and fresh weight. Full strength had the highest mean value in all the above-mentioned parameters and differed significantly (P>0.05) from others except in shoot length, number of adventitious roots, and root length where it did not differ (P

Comparative Study in Dentinal Tubuli Occlusion Using Bioglass and Copper-Bromide Laser

Cervical dentinal hypersensitivity (CDH) affects 8-30% of adults and nearly 85% of perio-treated patients. Various treatment schemes have been applied for treating CDH, among them being fluoride application, laser irradiation, and, recently, bioglass. The purpose of this study was to investigate the influence of bioglass, copper-bromide (Cu-Br) laser irradiation and their combination on dentinal tubule occlusion as a potential dentinal hypersensitivity treatment for CDH. 45 human dentin surfaces were organized into three equal groups: group A received Cu-Br laser only; group B received bioglass only; group C received bioglass followed by Cu-Br laser irradiation. Specimens were evaluated with regard to dentinal tubule occlusion under environmental scanning electron microscope. Treatment modality significantly affected dentinal tubule occlusion (p

The Crack Propagation on Glass in Laser Thermal Cleavage

In the laser cleavage of glass, the laser is mostly adopted as a heat source to generate a thermal stress state on the substrates. The crack propagation of the soda-lime glass in the laser thermal cleavage with the straight-turning paths was investigated in this study experimentally and numerically. The crack propagation was visualized by a high speed camera with the off-line examination on the micro-crack propagation. The temperature and stress distributions induced by the laser heat source were calculated by ANSYS software based on the finite element method (FEM). With the cutting paths in various turning directions, the experimental and numerical results were in comparison and verified. The fracture modes due to the normal and shear stresses were verified at the turning point of the laser cleavage path. It shows a significant variation of the stress profiles along the straight-turning paths and causes a change on the fracture modes.

Comparative Efficacy of Pomegranate Juice, Peel and Seed Extract in the Stabilization of Corn Oil under Accelerated Conditions

Antioxidant-rich extracts were prepared from pomegranate peels, seeds and juice using methanol and ethanol and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Both analytical methods indicated a higher antioxidant activity in extracts prepared from peels, which was comparable to that of butylated hydroxytoluene (BHT). Furthermore, the antioxidant activity was correlated to the phenolic and flavonoid content of the various extracts. The antioxidant effectiveness of the extracts was also assessed using corn oil as the oxidation substrate. More specifically, preheated corn oil samples stabilized with extracts at a concentration of 250 ppm, 500 ppm or 1,000 ppm were subjected to accelerated aging (100 oC, 10 days) and the extent of oxidative alteration was followed by the measurement of the peroxide, conjugated dienes and trienes, as well as p-aniside value. BHT at its legal limit (200 ppm) served as standard besides the control sample. Results from the different parameters were in agreement with each other suggesting that pomegranate extracts can stabilize corn oil effectively under accelerated conditions, at all concentrations tested. However, the magnitude of oil stabilization depended strongly on the amount of extract added and this was positively correlated with their phenolic content. Pomegranate peel extracts, which exhibited the highest not only phenolic and flavonoid content but also antioxidant activity, were more potent in inhibiting oxidative deterioration. Both methanolic and ethanolic peel extracts at a concentration of 500 ppm exerted a stabilizing effect comparable to that of BHT, while at a concentration of 1000 ppm they exhibited higher stabilization efficiency in comparison to BHT. Finally, heating oil samples resulted in a time dependent decrease in their antioxidant capacity. Samples containing peel extracts appeared to retain their antioxidant capacity for a longer period, indicating that these extracts contained active compounds that offered superior antioxidant protection to corn oil.

Collaborative Research between Malaysian and Australian Universities on Learning Analytics: Challenges and Strategies

Research on Learning Analytics is progressively developing in the higher education field by concentrating on the process of students' learning. Therefore, a research project between Malaysian and Australian Universities was initiated in 2015 to look at the use of Learning Analytics to support the development of teaching practice. The focal point of this article is to discuss and share the experiences of Malaysian and Australian universities in the process of developing the collaborative research on Learning Analytics. Three aspects of this will be discussed: 1) Establishing an international research project and team members, 2) cross-cultural understandings, and 3) ways of working in relation to the practicalities of the project. This article is intended to benefit other researchers by highlighting the challenges as well as the strategies used in this project to ensure such collaborative research succeeds.

Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2

Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.

Characterizing Multivariate Thresholds in Industrial Engineering

This paper highlights some of the normative issues that might result by setting independent thresholds in risk analyses and particularly with safety regions. A second objective is to explain how such regions can be specified appropriately in a meaningful way. We start with a review of the importance of setting deterministic trade-offs among target requirements. We then show how to determine safety regions for risk analysis appropriately using utility functions.

Enhancing Cooperation Between LEAs and Citizens: The INSPEC2T Approach

Enhancing the feeling of public safety and crime prevention are tasks customarily assigned to the Police. Police departments have, however, recognized that traditional ways of policing methods are becoming obsolete; Community Policing (CP) philosophy; however, when applied appropriately, leads to seamless collaboration between various stakeholders like the Police, NGOs and the general public and provides the opportunity to identify risks, assist in solving problems of crime, disorder, safety and crucially contribute to improving the quality of life for everyone in a community. Social Media, on the other hand, due to its high level of infiltration in modern life, constitutes a powerful mechanism which offers additional and direct communication channels to reach individuals or communities. These channels can be utilized to improve the citizens’ perception of the Police and to capture individual and community needs, when their feedback is taken into account by Law Enforcement Agencies (LEAs) in a structured and coordinated manner. This paper presents research conducted under INSPEC2T (Inspiring CitizeNS Participation for Enhanced Community PoliCing AcTions), a project funded by the European Commission’s research agenda to bridge the gap between CP as a philosophy and as an organizational strategy, capitalizing on the use of Social Media. The project aims to increase transparency, trust, police accountability, and the role of civil society. It aspires to build strong, trusting relationships between LEAs and the public, supporting two-way, contemporary communication while at the same time respecting anonymity of all affected parties. Results presented herein summarize the outcomes of four online multilingual surveys, focus group interviews, desktop research and interviews with experts in the field of CP practices. The above research activities were conducted in various EU countries aiming to capture requirements of end users from diverse backgrounds (social, cultural, legal and ethical) and determine public expectations regarding CP, community safety and crime prevention.

Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation

Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N2 adsorption/desorption, H2-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al2O3 can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al2O3 were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol.

Antioxidant Capacity of Different Broccoli Cultivars at Various Harvesting Dates

Broccoli is considered as being a rich source of AOX like flavonoids, polyphenols, anthocyanins etc. and of major interest especially in the organic sector. However, AOX is environment dependent and often varies between cultivars. Aim of the study was to investigate the impact of cultivar and harvest date on AOX in broccoli. Activity of the AOX was determined using a Photochem®-Analyzer and a kit of reagent solutions for analysis. Results of the study showed that the lipid (ACL) and water-soluble antioxidant potential (AWC) of broccoli heads varied significantly between the four harvesting dates, but not among the different cultivars. The highest concentration of ACL was measured in broccoli heads harvested in September 2011, followed by heads harvested at the beginning of July in 2012. ACW was highest in heads harvested in October 2011. Lowest concentrations of ACW were measured in heads harvested in June 2012. Overall, the study indicated that the harvest date and thus growing conditions seem to be of high importance for final antioxidant capacity of broccoli.

Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers

The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.

Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose

Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first.  Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.

Control of Underactuated Biped Robots Using Event Based Fuzzy Partial Feedback Linearization

Underactuated biped robots control is one of the interesting topics in robotics. The main difficulties are its highly nonlinear dynamics, open-loop instability, and discrete event at the end of the gait. One of the methods to control underactuated systems is the partial feedback linearization, but it is not robust against uncertainties and disturbances that restrict its performance to control biped walking and running. In this paper, fuzzy partial feedback linearization is presented to overcome its drawback. Numerical simulations verify the effectiveness of the proposed method to generate stable and robust biped walking and running gaits.

Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Architecture Design of the Robots Operability Assessment Simulation Testbed

This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example.

Determination of Thermophysical Properties of Water Based Magnetic Nanofluids

In this study, it was aimed to determine the thermophysical properties of two different magnetic nanofluids (NiFe2O4-water and CoFe2O4-water). Magnetic nanoparticles were dispersed into the pure water at different volume fractions from 0 vol.% to 4 vol.%. The measurements were performed in the temperature range of 15 oC-55 oC. In order to get better idea on the temperature dependent thermophysical properties of magnetic nanofluids (MNFs), viscosity and thermal conductivity measurements were made. SEM images of both NiFe2O4 and CoFe2O4 nanoparticles were used in order to confirm the average dimensions. The measurements showed that the thermal conductivity of MNFs increased with an increase in the volume fraction as well as viscosity. Increase in the temperature of both MNFs resulted in an increase in the thermal conductivity and a decrease in the viscosity. Based on the measured data, the correlations for both the viscosity and the thermal conductivity were presented with respect to solid volume ratio and temperature. Effective thermal conductivity of the prepared MNFs was also calculated. The results indicated that water based NiFe2O4 nanofluid had higher thermal conductivity than that of the CoFe2O4. Once the viscosity values of both MNFs were compared, almost no difference was observed.