Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach

The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C6H5SO2NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO4) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH3C6H5SO2NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented.

Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2

Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.