Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off

Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.

Effect of Heat Treatment on the Portevin-Le Chatelier Effect of Al-2.5%Mg Alloy

An experimental study is presented on the effect of microstructural change on the Portevin-Le Chatelier effect behaviour of Al-2.5%Mg alloy. Tensile tests are performed on the as received and heat treated (at 400 ºC for 16 hours) samples for a wide range of strain rates. The serrations observed in the stress-time curve are investigated from statistical analysis point of view. Microstructures of the samples are characterized by optical metallography and X-ray diffraction. It is found that the excess vacancy generated due to heat treatment leads to decrease in the strain rate sensitivity and the increase in the number of stress drop occurrences per unit time during the PLC effect. The microstructural parameters like domain size, dislocation density have no appreciable effect on the PLC effect as far as the statistical behavior of the serrations is considered.

High Level Characterization and Optimization of Switched-Current Sigma-Delta Modulators with VHDL-AMS

Today, design requirements are extending more and more from electronic (analogue and digital) to multidiscipline design. These current needs imply implementation of methodologies to make the CAD product reliable in order to improve time to market, study costs, reusability and reliability of the design process. This paper proposes a high level design approach applied for the characterization and the optimization of Switched-Current Sigma- Delta Modulators. It uses the new hardware description language VHDL-AMS to help the designers to optimize the characteristics of the modulator at a high level with a considerably reduced CPU time before passing to a transistor level characterization.

Block Activity in Metric Neural Networks

The model of neural networks on the small-world topology, with metric (local and random connectivity) is investigated. The synaptic weights are random, driving the network towards a chaotic state for the neural activity. An ordered macroscopic neuron state is induced by a bias in the network connections. When the connections are mainly local, the network emulates a block-like structure. It is found that the topology and the bias compete to influence the network to evolve into a global or a block activity ordering, according to the initial conditions.

Parallelization and Optimization of SIFT Feature Extraction on Cluster System

Scale Invariant Feature Transform (SIFT) has been widely applied, but extracting SIFT feature is complicated and time-consuming. In this paper, to meet the demand of the real-time applications, SIFT is parallelized and optimized on cluster system, which is named pSIFT. Redundancy storage and communication are used for boundary data to improve the performance, and before representation of feature descriptor, data reallocation is adopted to keep load balance in pSIFT. Experimental results show that pSIFT achieves good speedup and scalability.

Exploiting Global Self Similarity for Head-Shoulder Detection

People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.

An Application of SMED Methodology

Single Minute Exchange of Dies (SMED) mainly focuses on recognition of internal and external activities. It is concerned particularly with transferring internal activities into external ones in as many numbers as possible, by also minimizing the internal ones. The validity of the method and procedures are verified by an application a Styrofoam manufacturing process where setup times are critical for time reduction. Significant time savings have been achieved with minimum investment. Further, the issues related with employer safety and ergonomics principles during die exchange are noted.

Hybrid Neural Network Methods for Lithology Identification in the Algerian Sahara

In this paper, we combine a probabilistic neural method with radial-bias functions in order to construct the lithofacies of the wells DF01, DF02 and DF03 situated in the Triassic province of Algeria (Sahara). Lithofacies is a crucial problem in reservoir characterization. Our objective is to facilitate the experts' work in geological domain and to allow them to obtain quickly the structure and the nature of lands around the drilling. This study intends to design a tool that helps automatic deduction from numerical data. We used a probabilistic formalism to enhance the classification process initiated by a Self-Organized Map procedure. Our system gives lithofacies, from well-log data, of the concerned reservoir wells in an aspect easy to read by a geology expert who identifies the potential for oil production at a given source and so forms the basis for estimating the financial returns and economic benefits.

Design and Implementation of Rule-based Expert System for Fault Management

It has been defined that the “network is the system". This implies providing levels of service, reliability, predictability and availability that are commensurate with or better than those that individual computers provide today. To provide this requires integrated network management for interconnected networks of heterogeneous devices covering both the local campus. In this paper we are addressing a framework to effectively deal with this issue. It consists of components and interactions between them which are required to perform the service fault management. A real-world scenario is used to derive the requirements which have been applied to the component identification. An analysis of existing frameworks and approaches with respect to their applicability to the framework is also carried out.

Viscosity Reduction and Upgrading of Athabasca Oilsands Bitumen by Natural Zeolite Cracking

Oilsands bitumen is an extremely important source of energy for North America. However, due to the presence of large molecules such as asphaltenes, the density and viscosity of the bitumen recovered from these sands are much higher than those of conventional crude oil. As a result the extracted bitumen has to be diluted with expensive solvents, or thermochemically upgraded in large, capital-intensive conventional upgrading facilities prior to pipeline transport. This study demonstrates that globally abundant natural zeolites such as clinoptilolite from Saint Clouds, New Mexico and Ca-chabazite from Bowie, Arizona can be used as very effective reagents for cracking and visbreaking of oilsands bitumen. Natural zeolite cracked oilsands bitumen products are highly recoverable (up to ~ 83%) using light hydrocarbons such as pentane, which indicates substantial conversion of heavier fractions to lighter components. The resultant liquid products are much less viscous, and have lighter product distribution compared to those produced from pure thermal treatment. These natural minerals impart similar effect on industrially extracted Athabasca bitumen.

Early Registration : Criterion to Improve Communication-Inter Agents in Mobile-IP Protocol

In IETF RFC 2002, Mobile-IP was developed to enable Laptobs to maintain Internet connectivity while moving between subnets. However, the packet loss that comes from switching subnets arises because network connectivity is lost while the mobile host registers with the foreign agent and this encounters large end-to-end packet delays. The criterion to initiate a simple and fast full-duplex connection between the home agent and foreign agent, to reduce the roaming duration, is a very important issue to be considered by a work in this paper. State-transition Petri-Nets of the modeling scenario-based CIA: communication inter-agents procedure as an extension to the basic Mobile-IP registration process was designed and manipulated to describe the system in discrete events. The heuristic of configuration file during practical Setup session for registration parameters, on Cisco platform Router-1760 using IOS 12.3 (15)T and TFTP server S/W is created. Finally, stand-alone performance simulations from Simulink Matlab, within each subnet and also between subnets, are illustrated for reporting better end-toend packet delays. Results verified the effectiveness of our Mathcad analytical manipulation and experimental implementation. It showed lower values of end-to-end packet delay for Mobile-IP using CIA procedure-based early registration. Furthermore, it reported packets flow between subnets to improve losses between subnets.

A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision

Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized Leverberg- Marquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system.

Some Biochemical Changes Followed Experimental Gastric Ulceration

Gastric ulceration is a discontinuity in gastric mucosa, usually occurs due to imbalance between the gastric mucosal protective factors, that is called gastric mucosal barrier, and the aggressive factors, to which the mucosa is exposed. This study was carried out on sixty male Sprague-Dowely rats (12- 16 weeks old) allocated into two groups. The first control group and the second Gastric lesion group which induced by oral administration of a single daily dose of aspirin at a dose of 300 mg/kg body weight for 7 consecutive-days (6% aspirin solution will be prepared and each rat will be given 5 ml of that solution/kg body weight). Blood is collected 1, 2 and 3 weeks after induction of gastric ulceration. Significant increase in serum copper, nitric oxide, and prostaglandin E2 all over the period of experiment. Significant decrease in erythrocyte superoxide dismutase (t-SOD) activities, serum (calcium, phosphorus, glucose and insulin) levels. Non-significant changes in serum sodium and potassium levels are obtained.

Design and Implementation of Real-Time Automatic Censoring System on Chip for Radar Detection

Design and implementation of a novel B-ACOSD CFAR algorithm is presented in this paper. It is proposed for detecting radar target in log-normal distribution environment. The BACOSD detector is capable to detect automatically the number interference target in the reference cells and detect the real target by an adaptive threshold. The detector is implemented as a System on Chip on FPGA Altera Stratix II using parallelism and pipelining technique. For a reference window of length 16 cells, the experimental results showed that the processor works properly with a processing speed up to 115.13MHz and processing time0.29 ┬Ás, thus meets real-time requirement for a typical radar system.

Analysis of the Elastic Scattering of 12C on 11B at Energy near Coulomb Barrier Using Different Optical Potential Codes

the aim of that work is to study the proton transfer phenomenon which takes place in the elastic scattering of 12C on 11B at energies near the coulomb barrier. This reaction was studied at four different energies 16, 18, 22, 24 MeV. The experimental data of the angular distribution at these energies were compared to the calculation prediction using the optical potential codes such as ECIS88 and SPIVAL. For the raising in the cross section at backward angles due to the transfer process we could use Distorted Wave Born Approximation (DWUCK5). Our analysis showed that SPIVAL code with l-dependent imaginary potential could be used effectively.

Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Hydrothermal Behavior of G-S Magnetically Stabilized Beds Consisting of Magnetic and Non-Magnetic Admixtures

The hydrothermal behavior of a bed consisting of magnetic and shale oil particle admixtures under the effect of a transverse magnetic field is investigated. The phase diagram, bed void fraction are studied under wide range of the operating conditions i.e., gas velocity, magnetic field intensity and fraction of the magnetic particles. It is found that the range of the stabilized regime is reduced as the magnetic fraction decreases. In addition, the bed voidage at the onset of fluidization decreases as the magnetic fraction decreases. On the other hand, Nusselt number and consequently the heat transfer coefficient is found to increase as the magnetic fraction decreases. An empirical equation is investigated to relate the effect of the gas velocity, magnetic field intensity and fraction of the magnetic particles on the heat transfer behavior in the bed.

Sliding Joints and Soil-Structure Interaction

Use of a sliding joint is an effective method to decrease the stress in foundation structure where there is a horizontal deformation of subsoil (areas afflicted with underground mining) or horizontal deformation of a foundation structure (pre-stressed foundations, creep, shrinkage, temperature deformation). A convenient material for a sliding joint is a bitumen asphalt belt. Experiments for different types of bitumen belts were undertaken at the Faculty of Civil Engineering - VSB Technical University of Ostrava in 2008. This year an extension of the 2008 experiments is in progress and the shear resistance of a slide joint is being tested as a function of temperature in a temperature controlled room. In this paper experimental results of temperature dependant shear resistance are presented. The result of the experiments should be the sliding joint shear resistance as a function of deformation velocity and temperature. This relationship is used for numerical analysis of stress/strain relation between foundation structure and subsoil. Using a rheological slide joint could lead to a decrease of the reinforcement amount, and contribute to higher reliability of foundation structure and thus enable design of more durable and sustainable building structures.

News Media in Arab Societies

The paper examines the theories of media, dominant effects and critical and cultural theories that are used to examine media and society issues, and then apply the theories to explore the current situation of news media in Arab societies. The research is meant to explore the nature of media in the Arab world and the way that modern technologies have changed the nature of the Arab public sphere. It considers the role of an open press in promoting a more democratic society, while recognizing the unique qualities of an Arab culture.