The Issues of Effectiveness of Advertisement Communication Process: A Case Study of Lithuania Consumers

The goal of this study was to disclose the core of the advertising research based on the psychological aspects by acquainting with the nature of advertising research and revealing the importance of psychological aspects of advertising during the advertising research. The growing interest in consumer response to advertisement served as an encouragement to make the analysis of psychological aspects of the advertising research, because the information obtained during the advertising research helps to answer the question how advertising really works. In the research analysis focuses on the nature of advertising research. The place of advertising research in advertisement planning process and the advertising research process are unfolded. Moreover, the importance of psychological aspects in the advertising research is being examined. The certain psychological aspects like the particularities of advertising communication process, psychological process that are active at advertising acceptance and awareness process as well as the advertising effects are analysed in more detail.

Biodegradable Surfactants for Advanced Drug Delivery Strategies

Oxidative stress makes up common incidents in eukaryotic metabolism. The presence of diverse components disturbing the equilibrium during oxygen metabolism increases oxidative damage unspecifically in living cells. Body´s own ubiquinone (Q10) seems to be a promising drug in defending the heightened appearance of reactive oxygen species (ROS). Though, its lipophilic properties require a new strategy in drug formulation to overcome their low bioavailability. Consequently, the manufacture of heterogeneous nanodispersions is in focus for medical applications. The composition of conventional nanodispersions is made up of a drug-consisting core and a surfactive agent, also named as surfactant. Long-termed encapsulation of the surfactive components into tissues might be the consequence of the use during medical therapeutics. The potential of provoking side-effects is given by their nonbiodegradable properties. Further improvements during fabrication process use the incorporation of biodegradable components such as modified γ-polyglutamic acid which decreases the potential of prospective side-effects.

Supply Chain Management and E-Commerce Technology Adoption among Logistics Service Providers in Malaysia

Logistics is part of the supply chain processes that plans, implements, and controls the efficient and effective forward and reverse flow and storage of goods, services, and related information between the point of origin and the point of consumption in order to meet customer requirements. This research aims to investigate the current status and future direction of the use of Information Technology (IT) for logistics, focusing on Supply Chain Management (SCM) and E-Commerce adoption in Malaysia. Therefore, this research stresses on the type of technology being adopted, factors, benefits and barriers affecting the innovation in SCM and E-Commerce technology adoption among Logistics Service Providers (LSP). A mailed questionnaire survey was conducted to collect data from 265 logistics companies in Johor. The research revealed a high level of SCM technology adoption among LSP as they had adopted SCM technology in various business processes while they perceived a high level of benefits from SCM adoption.

Toward an Architecture of a Component-Based System Supporting Separation of Non- Functional Concerns

The promises of component-based technology can only be fully realized when the system contains in its design a necessary level of separation of concerns. The authors propose to focus on the concerns that emerge throughout the life cycle of the system and use them as an architectural foundation for the design of a component-based framework. The proposed model comprises a set of superimposed views of the system describing its functional and non-functional concerns. This approach is illustrated by the design of a specific framework for data analysis and data acquisition and supplemented with experiences from using the systems developed with this framework at the Fermi National Accelerator Laboratory.

Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems

Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.

Comparing Hilditch, Rosenfeld, Zhang-Suen,and Nagendraprasad -Wang-Gupta Thinning

This paper compares Hilditch, Rosenfeld, Zhang- Suen, dan Nagendraprasad Wang Gupta (NWG) thinning algorithms for Javanese character image recognition. Thinning is an effective process when the focus in not on the size of the pattern, but rather on the relative position of the strokes in the pattern. The research analyzes the thinning of 60 Javanese characters. Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.

Preliminary Assessment of Feasibility of a Wind Energy Conversion System for a Martian Probe or Surface Rover

Nuclear energy sources have been widely used in the past decades in order to power spacecraft subsystems. Nevertheless, their use has attracted controversy because of the risk of harmful material released into the atmosphere if an accident were to occur during the launch phase of the mission, leading to the general adoption of photovoltaic systems. As compared to solar cells, wind turbines have a great advantage on Mars, as they can continuously produce power both during dust storms and at night-time: this paper focuses on the potential of a wind energy conversion system (WECS) considering the atmospheric conditions on Mars. Wind potential on Martian surface has been estimated, as well as the average energy requirements of a Martian probe or surface rover. Finally, the expected daily energy output of the WECS has been computed on the basis of both the swept area of the rotor and the equivalent wind speed at the landing site.

Review of Surface Electromyogram Signals: Its Analysis and Applications

Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.

Real-time Laser Monitoring based on Pipe Detective Operation

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Multivariate School Travel Demand Regression Based on Trip Attraction

Since primary school trips usually start from home, attention by many scholars have been focused on the home end for data gathering. Thereafter category analysis has often been relied upon when predicting school travel demands. In this paper, school end was relied on for data gathering and multivariate regression for future travel demand prediction. 9859 pupils were surveyed by way of questionnaires at 21 primary schools. The town was divided into 5 zones. The study was carried out in Skudai Town, Malaysia. Based on the hypothesis that the number of primary school trip ends are expected to be the same because school trips are fixed, the choice of trip end would have inconsequential effect on the outcome. The study compared empirical data for home and school trip end productions and attractions. Variance from both data results was insignificant, although some claims from home based family survey were found to be grossly exaggerated. Data from the school trip ends was relied on for travel demand prediction because of its completeness. Accessibility, trip attraction and trip production were then related to school trip rates under daylight and dry weather conditions. The paper concluded that, accessibility is an important parameter when predicting demand for future school trip rates.

Environmental Management in Arid Regions:The Question of Water

Only recently have water ethics received focused interest in the international water community. Because water is metabolically basic to life, an ethical dimension persists in every decision related to water. Water ethics at once express human society-s approach to water and act as guidelines for behaviour. Ideas around water are often implicit and embedded as assumptions. They can be entrenched in behaviour and difficult to contest because they are difficult to “see". By explicitly revealing the ethical ideas underlying water-related decisions, human society-s relationship with water, and with natural systems of which water is part, can be contested and shifted or be accepted with conscious intention by human society. In recent decades, improved understanding of water-s importance for ecosystem functioning and ecological services for human survival is moving us beyond this growth-driven, supplyfocused management paradigm. Environmental ethics challenge this paradigm by extending the ethical sphere to the environment and thus water or water Resources management per se. An ethical approach is a legitimate, important, and often ignored approach to effect change in environmental decision making. This qualitative research explores principles of water ethics and examines the underlying ethical precepts of selected water policy examples. The constructed water ethic principles act as a set of criteria against which a policy comparison can be established. This study shows that water Resources management is a progressive issue by embracing full public participation and a new planning model, and knowledgegeneration initiatives.

Hybrid Power – Application for Tourism in Isolated Areas

The rapidly increasing costs of power line extensions and fossil fuel, combined with the desire to reduce carbon dioxide emissions pushed the development of hybrid power system suited for remote locations, the purpose in mind being that of autonomous local power systems. The paper presents the suggested solution for a “high penetration" hybrid power system, it being determined by the location of the settlement and its “zero policy" on carbon dioxide emissions. The paper focuses on the technical solution and the power flow management algorithm of the system, taking into consideration local conditions of development.

Design and Implementation a Fully Autonomous Soccer Player Robot

Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robot

Surface Plasmon Polariton Excitation by a Phase Shift Grating

We focus on the excitation and propagation properties of surface plasmon polariton (SPP). We have developed a SPP excitation device in combination with a grating structures fabricated by using the scanning probe lithography. Perturbation approach was used to investigate the coupling properties of SPP with a spatial harmonic wave supported by a metallic grating. A phase shift grating SPP coupler has been fabricated and the optical property was evaluated by the Fraunhofer diffraction formula. We have been experimentally confirmed the induced stop band by diffraction measurement. We have also observed the wavenumber shift of the resonance condition of SPP owing to effect of a phase shift.

Potential Effects of Human Bone Marrow Non- Mesenchymal Mononuclear Cells on Neuronal Differentiation

Bone marrow-derived stem cells have been widely studied as an alternative source of stem cells. Mesenchymal stem cells (MSCs) were mostly investigated and studies showed MSCs can promote neurogenesis. Little is known about the non-mesenchymal mononuclear cell fraction, which contains both hematopoietic and nonhematopoietic cells, including monocytes and endothelial progenitor cells. This study focused on unfractionated bone marrow mononuclear cells (BMMCs), which remained 72 h after MSCs were adhered to the culture plates. We showed that BMMC-conditioned medium promoted morphological changes of human SH-SY5Y neuroblastoma cells from an epithelial-like phenotype towards a neuron-like phenotype as indicated by an increase in neurite outgrowth, like those observed in retinoic acid (RA)-treated cells. The result could be explained by the effects of trophic factors released from BMMCs, as shown in the RT-PCR results that BMMCs expressed nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Similar results on the cell proliferation rate were also observed between RA-treated cells and cells cultured in BMMC-conditioned medium, suggesting that cells creased proliferating and differentiated into a neuronal phenotype. Using real-time RT-PCR, a significantly increased expression of tyrosine hydroxylase (TH) mRNA in SHSY5Y cells indicated that BMMC-conditioned medium induced catecholaminergic identities in differentiated SH-SY5Y cells.

Introduction of Open-Source e-Learning Environment and Resources: A Novel Approach for Secondary Schools in Tanzania

The concept of e-Learning is now emerging in Sub Saharan African countries like Tanzania. Due to economic constraints and other social and cultural factors faced by these countries, the use of Information and Communication Technology (ICT) is increasing at a very low pace. The digital divide threat has propelled the Government of Tanzania to put in place the national ICT Policy in 2003 which defines the direction of all ICT activities nationally. Among the main focused areas is the use of ICT in education, since for the development of any country, there is a need of creating knowledge based society. This paper discusses the initiatives made so far to introduce the use of ICT tools to some secondary schools using open source software in e-content development to facilitate a self-learning environment

A Novel Architecture for Wavelet based Image Fusion

In this paper, we focus on the fusion of images from different sources using multiresolution wavelet transforms. Based on reviews of popular image fusion techniques used in data analysis, different pixel and energy based methods are experimented. A novel architecture with a hybrid algorithm is proposed which applies pixel based maximum selection rule to low frequency approximations and filter mask based fusion to high frequency details of wavelet decomposition. The key feature of hybrid architecture is the combination of advantages of pixel and region based fusion in a single image which can help the development of sophisticated algorithms enhancing the edges and structural details. A Graphical User Interface is developed for image fusion to make the research outcomes available to the end user. To utilize GUI capabilities for medical, industrial and commercial activities without MATLAB installation, a standalone executable application is also developed using Matlab Compiler Runtime.

Distributed Frequency Synchronization for Global Synchronization in Wireless Mesh Networks

In this paper, our focus is to assure a global frequency synchronization in OFDMA-based wireless mesh networks with local information. To acquire the global synchronization in distributed manner, we propose a novel distributed frequency synchronization (DFS) method. DFS is a method that carrier frequencies of distributed nodes converge to a common value by repetitive estimation and averaging step and sharing step. Experimental results show that DFS achieves noteworthy better synchronization success probability than existing schemes in OFDMA-based mesh networks where the estimation error is presented.

Image Retrieval: Techniques, Challenge, and Trend

This paper attempts to discuss the evolution of the retrieval techniques focusing on development, challenges and trends of the image retrieval. It highlights both the already addressed and outstanding issues. The explosive growth of image data leads to the need of research and development of Image Retrieval. However, Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the users- mind.

Measuring the Comprehensibility of a UML-B Model and a B Model

Software maintenance, which involves making enhancements, modifications and corrections to existing software systems, consumes more than half of developer time. Specification comprehensibility plays an important role in software maintenance as it permits the understanding of the system properties more easily and quickly. The use of formal notation such as B increases a specification-s precision and consistency. However, the notation is regarded as being difficult to comprehend. Semi-formal notation such as the Unified Modelling Language (UML) is perceived as more accessible but it lacks formality. Perhaps by combining both notations could produce a specification that is not only accurate and consistent but also accessible to users. This paper presents an experiment conducted on a model that integrates the use of both UML and B notations, namely UML-B, versus a B model alone. The objective of the experiment was to evaluate the comprehensibility of a UML-B model compared to a traditional B model. The measurement used in the experiment focused on the efficiency in performing the comprehension tasks. The experiment employed a cross-over design and was conducted on forty-one subjects, including undergraduate and masters students. The results show that the notation used in the UML-B model is more comprehensible than the B model.