Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm

Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.

Experimental Determination of Reactions of Wind-Resistant Support of Circular Stacks in Various Configurations

Higher capacities of power plants together with increased awareness on environmental considerations have led to taller height of stacks. It is seen that strong wind can result in falling of stacks. So, aerodynamic consideration of stacks is very important in order to save the falling of stacks. One stack is not enough in industries and power sectors and two or three stacks are required for proper operation of the unit. It is very important to arrange the stacks in proper way to resist their downfall. The present experimental study concentrates on the mutual effect of three nearby stacks on each other at three different arrangements, viz. linear, side-by-side and triangular. The experiments find out the directions of resultant forces acting on the stacks in different configurations so that proper arrangement of supports can be made with respect to the wind directionality obtained from local meteorological data. One can also easily ascertain which stack is more vulnerable to wind in comparison to the others for a particular configuration. Thus, this study is important in studying the effect of wind force on three stacks in different arrangements and is very helpful in placing the supports in proper places in order to avoid failing of stack-like structures due to wind.

Adaptive Multi-Camera Shooting System Based on Dynamic Workflow in a Compact Studio

We developed a multi-camera control system that a (one) cameraman can operate several cameras at a compact studio. we analyzed a workflow of a cameraman of some program shootings with two cameras and clarified their heavy tasks. The system based on a dynamic workflow which adapts a program progressing and recommends of cameraman. we perform the automation of multicamera controls by modeling of studio environment and perform automatic camera adjustment for suitable angle of view with face detection. Our experiment at a real program shooting showed that one cameraman can carry out the task of shooting sufficiently.

Verifying X.509 Certificates on Smart Cards

This paper presents a smart-card applet that is able to verify X.509 certificates and to use the public key contained in the certificate for verifying digital signatures that have been created using the corresponding private key, e.g. for the purpose of authenticating the certificate owner against the card. The approach has been implemented as an operating prototype on Java cards.

Server Virtualization Using User Behavior Model Focus on Provisioning Concept

Server provisioning is one of the most attractive topics in virtualization systems. Virtualization is a method of running multiple independent virtual operating systems on a single physical computer. It is a way of maximizing physical resources to maximize the investment in hardware. Additionally, it can help to consolidate servers, improve hardware utilization and reduce the consumption of power and physical space in the data center. However, management of heterogeneous workloads, especially for resource utilization of the server, or so called provisioning becomes a challenge. In this paper, a new concept for managing workloads based on user behavior is presented. The experimental results show that user behaviors are different in each type of service workload and time. Understanding user behaviors may improve the efficiency of management in provisioning concept. This preliminary study may be an approach to improve management of data centers running heterogeneous workloads for provisioning in virtualization system.

An Image Encryption Method with Magnitude and Phase Manipulation using Carrier Images

We describe an effective method for image encryption which employs magnitude and phase manipulation using carrier images. Although it involves traditional methods like magnitude and phase encryptions, the novelty of this work lies in deploying the concept of carrier images for encryption purpose. To this end, a carrier image is randomly chosen from a set of stored images. One dimensional (1-D) discrete Fourier transform (DFT) is then carried out on the original image to be encrypted along with the carrier image. Row wise spectral addition and scaling is performed between the magnitude spectra of the original and carrier images by randomly selecting the rows. Similarly, row wise phase addition and scaling is performed between the original and carrier images phase spectra by randomly selecting the rows. The encrypted image obtained by these two operations is further subjected to one more level of magnitude and phase manipulation using another randomly chosen carrier image by 1-D DFT along the columns. The resulting encrypted image is found to be fully distorted, resulting in increasing the robustness of the proposed work. Further, applying the reverse process at the receiver, the decrypted image is found to be distortionless.

Proposed a Method for Increasing the Delivery Performance in Dynamic Supply Network

Supply network management adopts a systematic and integrative approach to managing the operations and relationships of various parties in a supply network. The objective of the manufactures in their supply network is to reduce inventory costs and increase customer satisfaction levels. One way of doing that is to synchronize delivery performance. A supply network can be described by nodes representing the companies and the links (relationships) between these nodes. Uncertainty in delivery time depends on type of network relationship between suppliers. The problem is to understand how the individual uncertainties influence the total uncertainty of the network and identify those parts of the network, which has the highest potential for improving the total delivery time uncertainty.

A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications

This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.

Design of Non-Blocking and Rearrangeable Modified Banyan Network with Electro-Optic MZI Switching Elements

Banyan networks are really attractive for serving as the optical switching architectures due to their unique properties of small depth and absolute signal loss uniformity. The fact has been established that the limitations of blocking nature and the nonavailability of proper connections due to non-rearrangeable property can be easily ruled out using electro-optic MZI switches as basic switching elements. Combination of the horizontal expansion and vertical stacking of optical banyan networks is an appropriate scheme for constructing non-blocking banyan-based optical switching networks. The interconnected banyan switching fabrics (IBSF) have been considered and analyzed to best serve the purpose of optical switching with electro-optic MZI basic elements. The cross/bar state interchange for the switches has been facilitated by appropriate voltage switching or the by the switching of operating wavelength. The paper is dedicated to the modification of the basic switching element being used as well as the architecture of the switching network.

Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method

Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.

Efficient Hardware Architecture of the Direct 2- D Transform for the HEVC Standard

This paper presents the hardware design of a unified architecture to compute the 4x4, 8x8 and 16x16 efficient twodimensional (2-D) transform for the HEVC standard. This architecture is based on fast integer transform algorithms. It is designed only with adders and shifts in order to reduce the hardware cost significantly. The goal is to ensure the maximum circuit reuse during the computing while saving 40% for the number of operations. The architecture is developed using FIFOs to compute the second dimension. The proposed hardware was implemented in VHDL. The VHDL RTL code works at 240 MHZ in an Altera Stratix III FPGA. The number of cycles in this architecture varies from 33 in 4-point- 2D-DCT to 172 when the 16-point-2D-DCT is computed. Results show frequency improvements reaching 96% when compared to an architecture described as the direct transcription of the algorithm.

U.S. Nuclear Regulatory CommissionTraining for Research and Training Reactor Inspectors

Currently, a large number of license activities (Early Site Permits, Combined Operating License, reactor certifications, etc.), are pending for review before the United States Nuclear Regulatory Commission (US NRC). Much of the senior staff at the NRC is now committed to these review and licensing actions. To address this additional workload, the NRC has recruited a large number of new Regulatory Staff for dealing with these and other regulatory actions such as the US Fleet of Research and Test Reactors (RTRs). These reactors pose unusual demands on Regulatory Staff since the US Fleet of RTRs, although few (32 Licensed RTRs as of 2010), they represent a broad range of reactor types, operations, and research and training aspects that nuclear reactor power plants (such as the 104 LWRs) do not pose. The NRC must inspect and regulate all these facilities. This paper addresses selected training topics and regulatory activities providedNRC Inspectors for RTRs.

The Effect of Loperamide and Fentanyl on the Distribution Kinetics of Verapamil in the Lung and Brain in Sprague Dawley Rats

Verapamil has been shown to inhibit fentanyl uptake in vitro and is a potent P-glycoprotein inhibitor. Tissue partitioning of loperamide, a commercially available opioid, is closely controlled by the P-gp efflux transporter. The following studies were designed to evaluate the effect of opioids on verapamil partitioning in the lung and brain, in vivo. Opioid (fentanyl or loperamide) was administered by intravenous infusion to Sprague Dawley rats alone or in combination with verapamil and plasma, with lung and brain tissues were collected at 1, 5, 6, 8, 10 and 60 minutes. Drug dispositions were modeled by recirculatory pharmacokinetic models. Fentanyl slightly increased the verapamil lung (PL) partition coefficient yet decreased the brain (PB) partition coefficient. Furthermore, loperamide significantly increased PLand PB. Fentanyl reduced the verapamil volume of distribution (V1) and verapamil elimination clearance (ClE). Fentanyl decreased verapamil brain partitioning, yet increased verapamil lung partitioning. Also, loperamide increased lung and brain partitioning in vivo. These results suggest that verapamil and fentanyl may be substrates of an unidentified inward transporter in brain tissue and confirm that verapamil and loperamide are substrates of the efflux transporter P-gp.

Evaluation of Market Limitations in the Case of Ecosystem Services

Biodiversity crisis is one of the many crises that started at the turn of the millennia. Concrete form of expression is still disputed, but there is a relatively high consensus regarding the high rate of degradation and the urgent need for action. The strategy of action outlines a strong economic component, together with the recognition of market mechanisms as the most effective policies to protect biodiversity. In this context, biodiversity and ecosystem services are natural assets that play a key role in economic strategies and technological development to promote development and prosperity. Developing and strengthening policies for transition to an economy based on efficient use of resources is the way forward. To emphasize the co-viability specific to the connection economyecosystem services, scientific approach aimed on one hand how to implement policies for nature conservation and on the other hand, the concepts underlying the economic expression of ecosystem services- value, in the context of current technology. Following the analysis of business opportunities associated with changes in ecosystem services was concluded that development of market mechanisms for nature conservation is a trend that is increasingly stronger individualized within recent years. Although there are still many controversial issues that have already given rise to an obvious bias, international organizations and national governments have initiated and implemented in cooperation or independently such mechanisms. Consequently, they created the conditions for convergence between private interests and social interests of nature conservation, so there are opportunities for ongoing business development which leads, among other things, the positive effects on biodiversity. Finally, points out that markets fail to quantify the value of most ecosystem services. Existing price signals reflect at best, only a proportion of the total amount corresponding provision of food, water or fuel.

Characteristics of Corporate Social Responsibility Indicators

The aim of the study is to investigate a number of characteristics of Corporate Social Responsibility (CSR) indicators that should be adopted by CSR assessment methodologies. For the purpose of this paper, a survey among the Greek companies that belong to FTSE 20 in Athens Exchange (FTSE/Athex-20) has been conducted, as these companies are expected to pioneer in the field of CSR. The results show consensus as regards the characteristics of indicators such as the need for the adoption of general and specific sector indicators, financial and non-financial indicators, the origin and the weight rate. However, the results are contradictory concerning the appropriate number of indicators for the assessment of CSR and the unit of measurement. Finally, the company-s sector is a more important dimension of CSR than the size and the country where the company operates. The purpose of this paper is to standardize the main characteristics of CSR indicators.

Building a Personalized Multidimensional Intelligent Learning System

Currently, most of distance learning courses can only deliver standard material to students. Students receive course content passively which leads to the neglect of the goal of education – “to suit the teaching to the ability of students". Providing appropriate course content according to students- ability is the main goal of this paper. Except offering a series of conventional learning services, abundant information available, and instant message delivery, a complete online learning environment should be able to distinguish between students- ability and provide learning courses that best suit their ability. However, if a distance learning site contains well-designed course content and design but fails to provide adaptive courses, students will gradually loss their interests and confidence in learning and result in ineffective learning or discontinued learning. In this paper, an intelligent tutoring system is proposed and it consists of several modules working cooperatively in order to build an adaptive learning environment for distance education. The operation of the system is based on the result of Self-Organizing Map (SOM) to divide students into different groups according to their learning ability and learning interests and then provide them with suitable course content. Accordingly, the problem of information overload and internet traffic problem can be solved because the amount of traffic accessing the same content is reduced.

Detection of Moving Images Using Neural Network

Motion detection is a basic operation in the selection of significant segments of the video signals. For an effective Human Computer Intelligent Interaction, the computer needs to recognize the motion and track the moving object. Here an efficient neural network system is proposed for motion detection from the static background. This method mainly consists of four parts like Frame Separation, Rough Motion Detection, Network Formation and Training, Object Tracking. This paper can be used to verify real time detections in such a way that it can be used in defense applications, bio-medical applications and robotics. This can also be used for obtaining detection information related to the size, location and direction of motion of moving objects for assessment purposes. The time taken for video tracking by this Neural Network is only few seconds.

Optimal Document Archiving and Fast Information Retrieval

In this paper, an intelligent algorithm for optimal document archiving is presented. It is kown that electronic archives are very important for information system management. Minimizing the size of the stored data in electronic archive is a main issue to reduce the physical storage area. Here, the effect of different types of Arabic fonts on electronic archives size is discussed. Simulation results show that PDF is the best file format for storage of the Arabic documents in electronic archive. Furthermore, fast information detection in a given PDF file is introduced. Such approach uses fast neural networks (FNNs) implemented in the frequency domain. The operation of these networks relies on performing cross correlation in the frequency domain rather than spatial one. It is proved mathematically and practically that the number of computation steps required for the presented FNNs is less than that needed by conventional neural networks (CNNs). Simulation results using MATLAB confirm the theoretical computations.

Acceptance Single Sampling Plan with Fuzzy Parameter with The Using of Poisson Distribution

This purpose of this paper is to present the acceptance single sampling plan when the fraction of nonconforming items is a fuzzy number and being modeled based on the fuzzy Poisson distribution. We have shown that the operating characteristic (oc) curves of the plan is like a band having a high and low bounds whose width depends on the ambiguity proportion parameter in the lot when that sample size and acceptance numbers is fixed. Finally we completed discuss opinion by a numerical example. And then we compared the oc bands of using of binomial with the oc bands of using of Poisson distribution.