Military Fighter Aircraft Selection Using Multiplicative Multiple Criteria Decision Making Analysis Method

Multiplicative multiple criteria decision making analysis (MCDMA) method is a systematic decision support system to aid decision makers reach appropriate decisions. The application of multiplicative MCDMA in the military aircraft selection problem is significant for proper decision making process, which is the decisive factor in minimizing expenditures and increasing defense capability and capacity. Nine military fighter aircraft alternatives were evaluated by ten decision criteria to solve the decision making problem. In this study, multiplicative MCDMA model aims to evaluate and select an appropriate military fighter aircraft for the Air Force fleet planning. The ranking results of multiplicative MCDMA model were compared with the ranking results of additive MCDMA, logarithmic MCDMA, and regrettive MCDMA models under the L2 norm data normalization technique to substantiate the robustness of the proposed method. The final ranking results indicate the military fighter aircraft Su-57 as the best available solution.

Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embedding. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic, and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n2) to O(n2/k), and the memory requirement from n2 to 2(n/k)2 which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Influence of Inhomogeneous Wind Fields on the Aerostatic Stability of a Cable-Stayed Pedestrian Bridge without Backstays: Experiments and Numerical Simulations

Sightseeing glass bridges located in steep valley area are being built on a large scale owing to the development of tourism. Consequently, their aerostatic stability is seriously affected by the wind field characteristics created by strong wind and special terrain, such as wind speed and wind attack angle. For instance, a cable-stayed pedestrian bridge without backstays comprised of a 60-m cantilever girder and the glass bridge deck is located in an abrupt valley, acting as a viewing platform. The bridge’s nonlinear aerostatic stability was analyzed by the segmental model test and numerical simulation in this paper. Based on aerostatic coefficients of the main girder measured in wind tunnel tests, nonlinear influences caused by the structure and aerostatic load, inhomogeneous distribution of torsion angle along the bridge axis, and the influence of initial attack angle were analyzed by using the incremental double iteration method. The results show that the aerostatic response varying with speed shows an obvious nonlinearity, and the aerostatic instability mode is of the characteristic of space deformation of bending-twisting coupling mode. The vertical and torsional deformation of the main girder is larger than its lateral deformation, with the wind speed approaching the critical wind speed. The flow of negative attack angle will reduce the bridges’ critical stability wind speed, but the influence of the negative attack angle on the aerostatic stability is more significant than that of the positive attack angle. The critical wind speeds of torsional divergence and lateral buckling are both larger than 200 m/s; namely, the bridge will not occur aerostatic instability under the action of various wind attack angles.

HaskellFL: A Tool for Detecting Logical Errors in Haskell

Understanding and using the functional paradigm is a challenge for many programmers. Looking for logical errors in code may take a lot of a developer’s time when a program grows in size. In order to facilitate both processes, this paper presents HaskellFL, a tool that uses fault localization techniques to locate a logical error in Haskell code. The Haskell subset used in this work is sufficiently expressive for those studying Functional Programming to get immediate help debugging their code and to answer questions about key concepts associated with the functional paradigm. HaskellFL was tested against Functional Programming assignments submitted by students enrolled at the Functional Programming class at the Federal University of Minas Gerais and against exercises from the Exercism Haskell track that are publicly available in GitHub. This work also evaluated the effectiveness of two fault localization techniques, Tarantula and Ochiai, in the Haskell context. Furthermore, the EXAM score was chosen to evaluate the tool’s effectiveness, and results showed that HaskellFL reduced the effort needed to locate an error for all tested scenarios. The results also showed that the Ochiai method was more effective than Tarantula.

Battery Grading Algorithm in 2nd-Life Repurposing Li-ion Battery System

This article presents a methodology that improves reliability and cyclability of 2nd-life Li-ion battery system repurposed as energy storage system (ESS). Most of the 2nd-life retired battery systems in market have module/pack-level state of health (SOH) indicator, which is utilized for guiding appropriate depth of discharge (DOD) in the application of ESS. Due to the lack of cell-level SOH indication, the different degrading behaviors among various cells cannot be identified upon reaching retired status; in the end, considering end of life (EOL) loss and pack-level DOD, the repurposed ESS has to be oversized by > 1.5 times to complement the application requirement of reliability and cyclability. This proposed battery grading algorithm, using non-invasive methodology, is able to detect outlier cells based on historical voltage data and calculate cell-level historical maximum temperature data using semi-analytic methodology. In this way, the individual battery cell in the 2nd-life battery system can be graded in terms of SOH on basis of the historical voltage fluctuation and estimated historical maximum temperature variation. These grades will have corresponding DOD grades in the application of the repurposed ESS to enhance the system reliability and cyclability. In all, this introduced battery grading algorithm is non-invasive, compatible with all kinds of retired Li-ion battery systems which lack of cell-level SOH indication, as well as potentially being embedded into battery management software for preventive maintenance and real-time cyclability optimization.

Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contain four obvious stages and the main decomposition reaction occurred in the range of 200-600 °C. Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2 and 3 were in the range of 6.67-20.37 kJ/mol for SS; 1.51-6.87 kJ/mol for HZSM5; and 2.29-9.17 kJ/mol for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1 and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with HZSM5 and AC were in the total range of C4-C17 with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds while the presence of HZSM5 and AC dropped to 7.3% and 13.02%, respectively. Meanwhile, generation of value-added chemicals such as light aromatic compounds were significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR and TGA techniques. Overall, this research demonstrated that AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Robot-assisted Relaxation Training for Children with Autism Spectrum Disorders

Cognitive Behavioral Therapy (CBT) has been proven an effective tool to address anger and anxiety issues in children and adolescents with Autism Spectrum Disorders (ASD). Robot-enhanced therapy has been used in psychosocial and educational interventions for children with ASD with promising results. Whenever CBT-based techniques were incorporated in robot-based interventions, they were mainly performed in group sessions. Objectives: The study’s main objective was the implementation and evaluation of the effectiveness of a relaxation training intervention for children with ASD, delivered by the social robot NAO. Methods: 20 children (aged 7–12 years) were randomly assigned to 16 sessions of relaxation training implemented twice a week. Two groups were formed: the NAO group (children participated in individual sessions with the support of NAO) and the control group (children participated in individual sessions with the support of the therapist only). Participants received three different relaxation scenarios of increasing difficulty (a breathing scenario, a progressive muscle relaxation scenario and a body scan medication scenario), as well as related homework sheets for practicing. Pre- and post-intervention assessments were conducted using the Child Behavior Checklist (CBCL) and the Strengths and Difficulties Questionnaire for parents (SDQ-P). Participants were also asked to complete an open-ended questionnaire to evaluate the effectiveness of the training. Parents’ satisfaction was evaluated via a questionnaire and children satisfaction was assessed by a thermometer scale. Results: The study supports the use of relaxation training with the NAO robot as instructor for children with ASD. Parents of enrolled children reported high levels of satisfaction and provided positive ratings of the training acceptability. Children in the NAO group presented greater motivation to complete homework and adopt the learned techniques at home. Conclusions: Relaxation training could be effectively integrated in robot-assisted protocols to help children with ASD regulate emotions and develop self-control.

The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection

This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.

Classification of Extreme Ground-Level Ozone Based on Generalized Extreme Value Model for Air Monitoring Station

Higher ground-level ozone (GLO) concentration adversely affects human health, vegetations as well as activities in the ecosystem. In Malaysia, most of the analysis on GLO concentration are carried out using the average value of GLO concentration, which refers to the centre of distribution to make a prediction or estimation. However, analysis which focuses on the higher value or extreme value in GLO concentration is rarely explored. Hence, the objective of this study is to classify the tail behaviour of GLO using generalized extreme value (GEV) distribution estimation the return level using the corresponding modelling (Gumbel, Weibull, and Frechet) of GEV distribution. The results show that Weibull distribution which is also known as short tail distribution and considered as having less extreme behaviour is the best-fitted distribution for four selected air monitoring stations in Peninsular Malaysia, namely Larkin, Pelabuhan Kelang, Shah Alam, and Tanjung Malim; while Gumbel distribution which is considered as a medium tail distribution is the best-fitted distribution for Nilai station. The return level of GLO concentration in Shah Alam station is comparatively higher than other stations. Overall, return levels increase with increasing return periods but the increment depends on the type of the tail of GEV distribution’s tail. We conduct this study by using maximum likelihood estimation (MLE) method to estimate the parameters at four selected stations in Peninsular Malaysia. Next, the validation for the fitted block maxima series to GEV distribution is performed using probability plot, quantile plot and likelihood ratio test. Profile likelihood confidence interval is tested to verify the type of GEV distribution. These results are important as a guide for early notification on future extreme ozone events.

A Retrospective Review of Sino-US Relations: Foreign Relations Strategies of Trump and Biden

This study used the methodology of a retrospective review to assess Sino-US relations and foreign relations strategies of Trump and Biden and found that while the Trump administration has ignited a trade war and a technology war with China, the stage is set for the Biden administration as to how it will handle Sino-US relations. We conclude that Biden is apparently tough on China and may counter the influence of China but will seek to maintain strategic cooperation with China on issues of mutual interest and there might be a renegotiation of the trade deal.

Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Small cell deployment in 5G networks is a promising technology to enhance the capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision problem using Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting policy, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method show better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks

The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing handover procedure while the user is on the move. However, dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and/or handover failure because of short time of stay of a user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method decreases the candidate small cell list, unnecessary handovers, handover failure and short time of stay cells compared to the competitive method.

The Contribution of Edgeworth, Bootstrap and Monte Carlo Methods in Financial Data

Edgeworth Approximation, Bootstrap and Monte Carlo Simulations have a considerable impact on the achieving certain results related to different problems taken into study. In our paper, we have treated a financial case related to the effect that have the components of a Cash-Flow of one of the most successful businesses in the world, as the financial activity, operational activity and investing activity to the cash and cash equivalents at the end of the three-months period. To have a better view of this case we have created a Vector Autoregression model, and after that we have generated the impulse responses in the terms of Asymptotic Analysis (Edgeworth Approximation), Monte Carlo Simulations and Residual Bootstrap based on the standard errors of every series created. The generated results consisted of the common tendencies for the three methods applied, that consequently verified the advantage of the three methods in the optimization of the model that contains many variants.

Study of the Thermal Performance of Bio-Sourced Materials Used as Thermal Insulation in Buildings under Humid Tropical Climate

In the fight against climate change, the energy consuming building sector must also be taken into account to solve this problem. In this case thermal insulation of buildings using bio-based materials is an interesting solution. Therefore, the thermal performance of some materials of this type has been studied. The advantages of these natural materials of plant origin are multiple, biodegradable, low economic cost, renewable and readily available. The use of biobased materials is widespread in the building sector in order to replace conventional insulation materials with natural materials. Vegetable fibers are very important because they have good thermal behaviour and good insulating properties. The aim of using bio-sourced materials is in line with the logic of energy control and environmental protection, the approach is to make the inhabitants of the houses comfortable and reduce their energy consumption (energy efficiency). In this research we will present the results of studies carried out on the thermal conductivity of banana leaves, latan leaves, vetivers fibers, palm kernel fibers, sargassum, coconut leaves, sawdust and bulk sugarcane leaves. The study on thermal conductivity was carried out in two ways, on the one hand using the flash method, and on the other hand a so-called hot box experiment was carried out. We will discuss and highlight a number of influential factors such as moisture and air pockets present in the samples on the thermophysical properties of these materials, in particular thermal conductivity. Finally, the result of a thermal performance test of banana leaves on a roof in Haiti will also be presented in this work.

Ballistics of Main Seat Ejection Cartridges for Aircraft Application

This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time to reach the maximum pressure, and time required to reach half the maximum pressure that responsible to the spinal injury of the pilot are assessed. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing is carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility is devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on SET. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for aircraft application.

Scientific Methods in Educational Management: The Metasystems Perspective

Although scientific methods have been the subject of a large number of papers, the term ‘scientific methods in educational management’ is still not well defined. In this paper, it is adopted the metasystems perspective to define the mentioned term and distinguish them from methods used in time of the scientific management and knowledge management paradigms. In our opinion, scientific methods in educational management rely on global phenomena, events, and processes and their influence on the educational organization. Currently, scientific methods in educational management are integrated with the phenomenon of globalization, cognitivisation, and openness, etc. of educational systems and with global events like the COVID-19 pandemic. Concrete scientific methods are nested in a hierarchy of more and more abstract models of educational management, which form the context of the global impact on education, in general, and learning outcomes, in particular. However, scientific methods can be assigned to a specific mission, strategy, or tactics of educational management of the concrete organization, either by the global management, local development of school organization, or/and development of the life-long successful learner. By accepting this assignment, the scientific method becomes a personal goal of each individual with the educational organization or the option to develop the educational organization at the global standards. In our opinion, in educational management, the scientific methods need to confine the scope to the deep analysis of concrete tasks of the educational system (i.e., teaching, learning, assessment, development), which result in concrete strategies of organizational development. More important are seeking the ways for dynamic equilibrium between the strategy and tactic of the planetary tasks in the field of global education, which result in a need for ecological methods of learning and communication. In sum, distinction between local and global scientific methods is dependent on the subjective conception of the task assignment, measurement, and appraisal. Finally, we conclude that scientific methods are not holistic scientific methods, but the strategy and tactics implemented in the global context by an effective educational/academic manager.

1/Sigma Term Weighting Scheme for Sentiment Analysis

Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.

Speedup Breadth-First Search by Graph Ordering

Breadth-First Search (BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improving the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes’ overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads.We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Adaptive Few-Shot Deep Metric Learning

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.