Scheduling a Project to Minimize Costs of Material Requirements

Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.

GIS-based Approach for Land-Use Analysis: A Case Study

Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.

Mathematical modeling of Bi-Substrate Enzymatic Reactions with Ping-Pong Mechanism in the Presence of Competitive Inhibitors

The mathematical modeling of different biological processes is usually used to predict or assess behavior of systems in which these processes take place. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions with ping-pong mechanism, which play an important role in different biochemical pathways. Besides that, three models of competitive inhibition were designed using different software packages. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions with ordered pingpong mechanism in the presence of competitive inhibitors, as well as to describe in details the inhibition effects. The simulation of the models with certain kinetic parameters allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of competitive inhibition. Simultaneous presence of two inhibitors, competitive to the S1 and S2 substrates have been studied. Moreover, we have found the pattern of simultaneous influence of both inhibitors.

Understanding Cultural Dissonance to Enhance Higher Education Academic Success

This research documents a qualitative study of selected Native Americans who have successfully graduated from mainstream higher education institutions. The research framework explored the Bicultural Identity Formation Model as a means of understanding the expressions of the students' adaptations to mainstream education. This approach lead to an awareness of how the participants in the study used specific cultural and social strategies to enhance their educational success and also to an awareness of how they coped with cultural dissonance to achieve a new academic identity. Research implications impact a larger audience of bicultural, foreign, or international students experiencing cultural dissonance.

A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System

This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.

Mapping Semantic Networks to Undirected Networks

There exists an injective, information-preserving function that maps a semantic network (i.e a directed labeled network) to a directed network (i.e. a directed unlabeled network). The edge label in the semantic network is represented as a topological feature of the directed network. Also, there exists an injective function that maps a directed network to an undirected network (i.e. an undirected unlabeled network). The edge directionality in the directed network is represented as a topological feature of the undirected network. Through function composition, there exists an injective function that maps a semantic network to an undirected network. Thus, aside from space constraints, the semantic network construct does not have any modeling functionality that is not possible with either a directed or undirected network representation. Two proofs of this idea will be presented. The first is a proof of the aforementioned function composition concept. The second is a simpler proof involving an undirected binary encoding of a semantic network.

Street Network in Bandung City, Indonesia: Comparison between City Center and New Commercial Area

Bandung city center can be deemed as economic, social and cultural center. However the city center suffers from deterioration. The retail activities tend to shift outward the city center. Numerous idyllic residences changed into business premises in two villages situated in the north part of the city during 1990s, especially after a new highway and flyover opened. According to space syntax theory, the pattern of spatial integration in the urban grid is a prime determinant of movement patterns in the system. The syntactic analysis results show the flyover has insignificant influence on street network in the city center. However the flyover has been generating a major difference in the new commercial area since it has become relatively as strategic as the city center. Besides street network, local government policy, rapid private motorization and particular condition of each site also played important roles in encouraging the current commercial areas to flourish.

A Nano-Scaled SRAM Guard Band Design with Gaussian Mixtures Model of Complex Long Tail RTN Distributions

This paper proposes, for the first time, how the challenges facing the guard-band designs including the margin assist-circuits scheme for the screening-test in the coming process generations should be addressed. The increased screening error impacts are discussed based on the proposed statistical analysis models. It has been shown that the yield-loss caused by the misjudgment on the screening test would become 5-orders of magnitude larger than that for the conventional one when the amplitude of random telegraph noise (RTN) caused variations approaches to that of random dopant fluctuation. Three fitting methods to approximate the RTN caused complex Gamma mixtures distributions by the simple Gaussian mixtures model (GMM) are proposed and compared. It has been verified that the proposed methods can reduce the error of the fail-bit predictions by 4-orders of magnitude.

Performance Boundaries for Interactive Finite Element Applications

This paper presents work characterizing finite element performance boundaries within which live, interactive finite element modeling is feasible on current and emerging systems. These results are based on wide-ranging tests performed using a prototype finite element program implemented specifically for this study, thereby enabling the unified investigation of numerous direct and iterative solver strategies and implementations in a variety of modeling contexts. The results are intended to be useful for researchers interested in interactive analysis by providing baseline performance estimates, to give guidance in matching solution strategies to problem domains, and to spur further work addressing the challenge of extending the present boundaries.

The Impact of Parent Involvement in Preschool Disabled Children

The purpose of this study was to investigate the relationship between parent involvement and preschool disabled children’s development. Parents of 3 year old disabled children (N=440) and 5 year old disabled children (N=937) participating in the Special Needs Education Longitudinal Study were interviewed or answered the web design questionnaire about their actions in parenting their disabled children. These children’s developments were also evaluated by their teachers. Data were analyzed using Structural Equation Modeling. Results were showed by tables and figures. Based on the results, the researcher made some suggestions for future studies.

Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology

Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.

Sediment Fixation of Arsenic in the Ash Lagoon of a Coal-Fired Power Plant, Philippines

Arsenic in the sediments of the ash lagoons of the coal-fired power plant in Pagbilao, Quezon Province in the Philippines was sequentially extracted to determine its potential for leaching to the groundwater and the adjacent marine environment. Results show that 89% of the As is bound to the quasi-crystalline Fe/Mn oxides and hydroxide matrix in the sediments, whereas, the adsorbed and exchangeable As hosted by the clay minerals, representing those that are easiest to release from the sediment matrix, is below 10% of the acid leachable As. These As in these sediment matrices represent the possible maximum amount of As that can be released and supplied to the groundwater and the adjacent marine environment. Of the 89% reducible As, up to 4% is associated with the easily reducible variety, whereas, the rest is more strongly bonded by the moderately reducible variety. Based on the long-term As content of the lagoon water, the average desorption rate of As is calculated to be very low -- 0.3-0.5% on the average and 0.6% on the maximum. This indicates that As is well-fixed by its sediment matrices in the ash lagoon, attenuating the influx of As into the adjacent groundwater and marine environments.

Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control

This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presented

Removal of Copper (II) from Aqueous Solutions Using Teak (Tectona grandis L.f) Leaves

The experiments were performed in a batch set up under different concentrations of Cu (II) (0.2 g.l-1 to 0.9 g.l-1), pH (4- 6), temperatures (20oC – 40oC) with varying teak leaves powder (as biosorbent) dosage of 0.3 g.l-1 to 0.5 g.l-1. The kinetics of interactions were tested with pseudo first order Lagergran equation and the value for k1 was found to be 6.909 x 10-3 min-1. The biosorption data gave a good fit with Langmuir and Fruendlich isotherms and the Langmuir monolayer capacity (qm) was found to be 166.78 mg. g-1. Similarly the Freundlich adsorption capacity (Kf) was estimated as 2.49 l g-1. The mean values of the thermodynamic parameters ΔH, ΔS, and ΔG were -62.42 KJ. mol-1, -0.219 KJ.mol-1 K-1 and -1.747 KJ.mol-1 at 293 K from a solution containing 0.4 g l-1 of Cu(II) showing the biosorption to be thermodynamically favourable. These results show good potentiality of using teak leaves as a biosorbent for the removal of Cu(II) from aqueous solutions.

A Taxonomy of Group Key Management Protocols: Issues and Solutions

Group key management is an important functional building block for any secure multicast architecture. Thereby, it has been extensively studied in the literature. In this paper we present relevant group key management protocols. Then, we compare them against some pertinent performance criteria.

Successful Straw Combustion Technology in Zluticka Heating Plant

We successfully developed and tested a new separation layer solving problems with unmanageable deposits inside the boilers of Zluticka Heating Plant. The deposits are mainly created by glass-forming melts. We plotted straw ash compositions in K2OCaO- SiO2 phase diagram and illustrated that they are in the area of low-melting eutectic points. To prevent the melting of ash and the formation of deposits, we modified ash compositions by injecting additives into biomass fuel, and thus effectively suppressed deposits in a burner.

Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

The Performance of PVD Coated Grade in Milling of ADI 800

The aim of this investigation is to study the performance of the new generation of the PVD coated grade and to map the influence of cutting conditions on the tool life in milling of ADI (Austempered Ductile Iron). The results show that chipping is the main wear mechanism which determines the tool life in dry condition and notch wear in wet condition for this application. This due to the different stress mechanisms and preexisting cracks in the coating. The wear development shows clearly that the new PVD coating (C20) has the best ability to delay the chipping growth. It was also found that a high content of Al in the new coating (C20) was especially favorable compared to a TiAlN multilayer with lower Al content (C30) or CVD coating. This is due to fine grains and low compressive stress level in the coating which increase the coating ability to withstand the mechanical and thermal impact. It was also found that the use of coolant decreases the tool life with 70-80% compare to dry milling.

Unsteady Aerodynamics of Multiple Airfoils in Configuration

A potential flow model is used to study the unsteady flow past two airfoils in configuration, each of which is suddenly set into motion. The airfoil bound vortices are modeled using lumped vortex elements and the wake behind the airfoil is modeled by discrete vortices. This consists of solving a steady state flow problem at each time-step where unsteadiness is incorporated through the “zero normal flow on a solid surface" boundary condition at every time instant. Additionally, along with the “zero normal flow on a solid surface" boundary condition Kelvin-s condition is used to compute the strength of the latest wake vortex shed from the trailing edge of the airfoil. Location of the wake vortices is updated at each time-step to get the wake shape at each time instant. Results are presented to show the effect of airfoil-airfoil interaction and airfoil-wake interaction on the aerodynamic characteristics of each airfoil.

Review of Scouring on Integral Bridge and its Possible Protection

The purpose of this paper is to summarize the following protection of scouring countermeasures by using Bentonite-Enhanced Sand (BES) mixtures. The concept of underground improvement is being used in this study to reduce the void of the sand. The sand bentonite mixture was used to bond the ground soil conditions surrounding the pile of integral bridge. The right composition of sand bentonite mixture was proposed based on previous findings. The swelling effect of bentonite also was investigated to ensure there is no adverse impact to the structure of the integral bridge. ScourScour, another name for severe erosion, occurs when the erosive capacity of water resulting from natural and manmade events exceeds the ability of earth materials to resist its effects. According to AASHTO LRFD Specifications (Section C3.7.5), scour is the most common reason for the collapse of highway bridges in the United States