Accurate Optical Flow Based on Spatiotemporal Gradient Constancy Assumption

Variational methods for optical flow estimation are known for their excellent performance. The method proposed by Brox et al. [5] exemplifies the strength of that framework. It combines several concepts into single energy functional that is then minimized according to clear numerical procedure. In this paper we propose a modification of that algorithm starting from the spatiotemporal gradient constancy assumption. The numerical scheme allows to establish the connection between our model and the CLG(H) method introduced in [18]. Experimental evaluation carried out on synthetic sequences shows the significant superiority of the spatial variant of the proposed method. The comparison between methods for the realworld sequence is also enclosed.

Success Factors of Large Scale ERP Implementation in Thailand

The objectives of the study are to examine the determinants of ERP implementation success factors of ERP implementation. The result indicates that large scale ERP implementation success consist of eight factors: project management competence, knowledge sharing, ERP system quality , understanding, user involvement, business process re-engineering, top management support, organization readiness.

Wireless Sensor Networks for Long Distance Pipeline Monitoring

The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are previewed. These are wired sensor networks, RF wireless sensor networks, integrated wired and wireless sensor networks. The reliability of these architectures is discussed. Three reliability factors are used to compare the architectures in terms of network connectivity, continuity of power supply for the network, and the maintainability of the network. The constraints and challenges of wireless sensor networks for monitoring and protecting long distance pipeline infrastructure are discussed.

Effects of Mach Number and Angle of Attack on Mass Flow Rates and Entropy Gain in a Supersonic Inlet

A parametric study of a mixed-compression supersonic inlet is performed and reported. The effects of inlet Mach Numbers, varying from 4 to 10, and angle of attack, varying from 0 to 10, are reported for a constant inlet dynamic pressure. The paper looked at the variations of mass flow rates through the inlet, gain in entropy through the inlet, and the angles of the external oblique shocks. The mass flow rates were found to decrease monotonically with Mach numbers and increase with angle of attacks. On the other hand the entropy gain through the inlet increased with increasing Mach number and angle of attack. The variation in static pressure was found to be identical from the inlet throat to the exit for Mach number values higher than 6.

Learning a Song: an ACT-R Model

The way music is interpreted by the human brain is a very interesting topic, but also an intricate one. Although this domain has been studied for over a century, many gray areas remain in the understanding of music. Recent advances have enabled us to perform accurate measurements of the time taken by the human brain to interpret and assimilate a sound. Cognitive computing provides tools and development environments that facilitate human cognition simulation. ACT-R is a cognitive architecture which offers an environment for implementing human cognitive tasks. This project combines our understanding of the music interpretation by a human listener and the ACT-R cognitive architecture to build SINGER, a computerized simulation for listening and recalling songs. The results are similar to human experimental data. Simulation results also show how it is easier to remember short melodies than long melodies which require more trials to be recalled correctly.

Design and Manufacturing of a Propeller for Axial-Flow Fan

This work presents a methodology for the design and manufacture of propellers oriented to the experimental verification of theoretical results based on the combined model. The design process begins by using algorithms in Matlab which output data contain the coordinates of the points that define the blade airfoils, in this case the NACA 6512 airfoil was used. The modeling for the propeller blade was made in NX7, through the imported files in Matlab and with the help of surfaces. Later, the hub and the clamps were also modeled. Finally, NX 7 also made possible to create post-processed files to the required machine. It is possible to find the block of numbers with G & M codes about the type of driver on the machine. The file extension is .ptp. These files made possible to manufacture the blade, and the hub of the propeller.

Secure and Failure Factors of e-Government Projects Implementation in Developing Country: A Study on the Implementation of Kingdom of Bahrain

The concept of e-government has begun to spread among countries. It is based on the use of information communication technology (ICT) to fully utilize government resources, as well as to provide government services to citizens, investors and foreigners. Critical factors are the factors that are determined by the senior management of each organization; the success or failure of the organization depends on the effective implementation of critical factors. These factors vary from one organization to another according to their activity, size and functions. It is very important that organizations identify them in order to avoid the risk of implementing initiatives that may fail to work, while simultaneously exploiting opportunities that may succeed in working. The main focus of this paper is to investigate the majority of critical success factors (CSFs) associated with the implementation of e-government projects. This study concentrates on both technical and nontechnical factors. This paper concludes by listing the majority of CSFs relating to successful e-government implementation in Bahrain.

Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid

A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.

An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes

Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.

A Lossless Watermarking Based Authentication System For Medical Images

In this paper we investigate the watermarking authentication when applied to medical imagery field. We first give an overview of watermarking technology by paying attention to fragile watermarking since it is the usual scheme for authentication.We then analyze the requirements for image authentication and integrity in medical imagery, and we show finally that invertible schemes are the best suited for this particular field. A well known authentication method is studied. This technique is then adapted here for interleaving patient information and message authentication code with medical images in a reversible manner, that is using lossless compression. The resulting scheme enables on a side the exact recovery of the original image that can be unambiguously authenticated, and on the other side, the patient information to be saved or transmitted in a confidential way. To ensure greater security the patient information is encrypted before being embedded into images.

A Novel Implementation of Application Specific Instruction-set Processor (ASIP) using Verilog

The general purpose processors that are used in embedded systems must support constraints like execution time, power consumption, code size and so on. On the other hand an Application Specific Instruction-set Processor (ASIP) has advantages in terms of power consumption, performance and flexibility. In this paper, a 16-bit Application Specific Instruction-set processor for the sensor data transfer is proposed. The designed processor architecture consists of on-chip transmitter and receiver modules along with the processing and controlling units to enable the data transmission and reception on a single die. The data transfer is accomplished with less number of instructions as compared with the general purpose processor. The ASIP core operates at a maximum clock frequency of 1.132GHz with a delay of 0.883ns and consumes 569.63mW power at an operating voltage of 1.2V. The ASIP is implemented in Verilog HDL using the Xilinx platform on Virtex4.

Processing, Morphological, Thermal and Absorption Behavior of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites

Thermoplastic starch, polylactic acid glycerol and maleic anhydride (MA) were compounded with natural montmorillonite (MMT) through a twin screw extruder to investigate the effects of different loading of MMT on structure, thermal and absorption behavior of the nanocomposites. X-ray diffraction analysis (XRD) showed that sample with MMT loading 4phr exhibited exfoliated structure while sample that contained MMT 8 phr exhibited intercalated structure. FESEM images showed big lump when MMT loading was at 8 phr. The thermal properties were characterized by using differential scanning calorimeter (DSC). The results showed that MMT increased melting temperature and crystallization temperature of matrix but reduction in glass transition temperature was observed Meanwhile the addition of MMT has improved the water barrier property. The nanosize MMT particle is also able to block a tortuous pathway for water to enter the starch chain, thus reducing the water uptake and improved the physical barrier of nanocomposite.

Iterative Way to Acquire Information Technology for Defense and Aerospace

Defense and Aerospace environment is continuously striving to keep up with increasingly sophisticated Information Technology (IT) in order to remain effective in today-s dynamic and unpredictable threat environment. This makes IT one of the largest and fastest growing expenses of Defense. Hundreds of millions of dollars spent a year on IT projects. But, too many of those millions are wasted on costly mistakes. Systems that do not work properly, new components that are not compatible with old ones, trendy new applications that do not really satisfy defense needs or lost through poorly managed contracts. This paper investigates and compiles the effective strategies that aim to end exasperation with low returns and high cost of Information Technology acquisition for defense; it tries to show how to maximize value while reducing time and expenditure.

Genetic-based Anomaly Detection in Logs of Process Aware Systems

Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.

Study The Effects of Conventional and Low Input Production System on Energy Efficiency of Silybum marianum L.

Medicinal plants are most suitable crops for ecological production systems because of their role in human health and the aim of sustainable agriculture to improve ecosystem efficiency and its products quality. Calculations include energy output (contents of energy in seed) and energy inputs (consumption of fertilizers, pesticides, labor, machines, fuel and electricity). The ratio of output of the production to inputs is called the energy outputs / inputs ratio or energy efficiency. One way to quantify essential parts of agricultural development is the energy flow method. The output / input energy ratio is proposed as the most comprehensive single factor in pursuing the objective of sustainability. Sylibum marianum L. is one of the most important medicinal plants in Iran and has effective role on health of growing population in Iran. The objective of this investigation was to find out energy efficiency in conventional and low input production system of Milk thistle. This investigation was carried out in the spring of 2005 – 2007 in the Research Station of Rangelands in Hamand - Damavand region of IRAN. This experiment was done in split-split plot based on randomized complete block design with 3 replications. Treatments were 2 production systems (Conventional and Low input system) in the main plots, 3 planting time (25 of March, 4 and 14 of April) in the sub plots and 2 seed types (Improved and Native of Khoozestan) in the sub-sub plots. Results showed that in conventional production system energy efficiency, because of higher inputs and less seed yield, was less than low input production system. Seed yield was 1199.5 and 1888 kg/ha in conventional and low input systems, respectively. Total energy inputs and out puts for conventional system was 10068544.5 and 7060515.9 kcal. These amounts for low input system were 9533885.6 and 11113191.8 kcal. Results showed that energy efficiency for seed production in conventional and low input system was 0.7 and 1.16, respectively. So, milk thistle seed production in low input system has 39.6 percent higher energy efficiency than conventional production system. Also, higher energy efficiency were found in sooner planting time (25 of March) and native seed of Khoozestan.

Interfacing C and TMS320C6713 Assembly Language (Part-I)

This paper describes an interfacing of C and the TMS320C6713 assembly language which is crucially important for many real-time applications. Similarly, interfacing of C with the assembly language of a conventional microprocessor such as MC68000 is presented for comparison. However, it should be noted that the way the C compiler passes arguments among various functions in the TMS320C6713-based environment is totally different from the way the C compiler passes arguments in a conventional microprocessor such as MC68000. Therefore, it is very important for a user of the TMS320C6713-based system to properly understand and follow the register conventions when interfacing C with the TMS320C6713 assembly language subroutine. It should be also noted that in some cases (examples 6-9) the endian-mode of the board needs to be taken into consideration. In this paper, one method is presented in great detail. Other methods will be presented in the future.

Life Table and Reproductive Table Parameters of Scolothrips Longicornis (Thysanoptera: Thripidae) as a Predator of Two-Spotted Spider Mite, Tetranychus Turkestani (Acari: Tetranychidae)

Scolothrips longicornis Priesner is one of the important predators of tetranychid mites with a wide distribution throughout Iran. Life table and population growth parameters of S. longicornis feeding on two-spotted spider mite, Tetranychus turkestani Ugarov & Nikolski were investigated under laboratory condition (26±1ºC, 65±5% R.H. and 16L: 8D). To carry of these experiments, S. longicornis collections reared on cowpea infested with T. turkestani were prepared. The eggs with less than 24 hours old were selected and reared. The emerged larvae feeding directly on cowpea leaf discs which were infested with T. turkestani. Thirty females of S. longicornis with 24 hours age were selected and released on infested leaf discs. They replaced daily to a new leaf disc and the laying eggs have counted. The experiment continued till the last thrips had died. The result showed that the mean age mortality of the adult female thrips were between 21-25 days which is nearly equal life expectancy (ex) at the time of adult eclosion. Parameters related to reproductive table including gross reproductive rate, net reproductive rate, intrinsic rate of natural increase and finite rate of increase were 48.91, 37.63, 0.26 and 2.3, respectively. Mean age per female/day, mean fertile egg per female/day, gross hatch rate, mean net age fertility, mean net age fecundity, net fertility rate and net fecundity rate were 2.23, 1.76, 0.87, 13.87, 14.26, 69.1 and 78.5, respectively. Sex ratio of offspring also recorded daily. The highest sex ratio for females was 0.88 in first day of oviposition. The sex ratio decreased gradually and reached under 0.46 after the day 26 and the oviposition rate declined. Then it seems that maintenance of rearing culture of predatory thrips for mass rearing later than 26 days after egg-laying commence is not profitable.

Double Layer Polarization and Non-Linear Electroosmosis in and around a Charged Permeable Aggregate

We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the Dracy- Brinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed.

Design of an Intelligent Tutor using a Multiagent Approach

Research in distributed artificial intelligence and multiagent systems consider how a set of distributed entities can interact and coordinate their actions in order to solve a given problem. In this paper an overview of this concept and its evolution is presented particularly its application in the design of intelligent tutoring systems. An intelligent tutor based on the concept of agent and centered specifically on the design of a pedagogue agent is illustrated. Our work has two goals: the first one concerns the architecture aspect and the design of a tutor using multiagent approach. The second one deals particularly with the design of a part of a tutor system: the pedagogue agent.

Sustainability of Urban Cemeteries and the Transformation of Malay Burial Practices in Kuala Lumpur Metropolitan Region

Land shortage for burials is one of many issues that emerge out of accelerated urban growth in most developing Asian cities, including Kuala Lumpur. Despite actions taken by the federal government and local authorities in addressing this issue, there is no strategic solution being formulated. Apart from making provisions for land to be developed as new cemeteries, the future plan is merely to allocate reserve land to accommodate the increasing demands of burial grounds around the city. This paper examines problems that arise from the traditional practices of Malay funerary as well as an insight to current urban practices in managing Muslim burial spaces around Kuala Lumpur metropolitan region. This paper will also provide some solutions through design approach that can be applied to counter the existing issues.