Power Transformers Insulation Material Investigations: Partial Discharge

There is a great problem in testing and investigations the reliability of different type of transformers insulation materials. It summarized in how to create and simulate the real conditions of working transformer and testing its insulation materials for Partial Discharge PD, typically as in the working mode. A lot of tests may give untrue results as the physical behavior of the insulation material differs under tests from its working condition. In this work, the real working conditions were simulated, and a large number of specimens have been tested. The investigations first stage, begin with choosing samples of different types of insulation materials (papers, pressboards, etc.). The second stage, the samples were dried in ovens at 105 C0and 0.01bar for 48 hours, and then impregnated with dried and gasless oil (the water content less than 6 ppm.) at 105 C0and 0.01bar for 48 hours, after so specimen cooling at room pressure and temperature for 24 hours. The third stage is investigating PD for the samples using ICM PD measuring device. After that, a continuous test on oil-impregnated insulation materials (paper, pressboards) was developed, and the phase resolved partial discharge pattern of PD signals was measured. The important of this work in providing the industrial sector with trusted high accurate measuring results based on real simulated working conditions. All the PD patterns (results) associated with a discharge produced in well-controlled laboratory condition. They compared with other previous and other laboratory results. In addition, the influence of different temperatures condition on the partial discharge activities was studied.

Investigating the Transformer Operating Conditions for Evaluating the Dielectric Response

This paper presents an experimental investigation of transformer dielectric response and solid insulation water content. The dielectric response was carried out on the base of Hybrid Frequency Dielectric Spectroscopy and Polarization Current measurements method (FDS &PC). The calculation of the water content in paper is based on the water content in oil and the obtained equilibrium curves. A reference measurements were performed at equilibrium conditions for water content in oil and paper of transformer at different stable temperatures (25, 50, 60 and 70°C) to prepare references to evaluate the insulation behavior at the not equilibrium conditions. Some measurements performed at the different simulated normal working modes of transformer operation at the same temperature where the equilibrium conditions. The obtained results show that when transformer temperature is mach more than the its ambient temperature, the transformer temperature decreases immediately after disconnecting the transformer from the network and this temperature reduction influences the transformer insulation condition in the measuring process. In addition to the oil temperature at the near places to the sensors, the temperature uniformity in transformer which can be changed by a big change in the load of transformer before the measuring time will influence the result. The investigations have shown that the extremely influence of the time between disconnecting the transformer and beginning the measurements on the results. And the online monitoring for water content in paper measurements, on the basis of the oil water content on line monitoring and the obtained equilibrium curves. The measurements where performed continuously and for about 50 days without any disconnection in the prepared the adiabatic room.