Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Analysis of P, d and 3He Elastically Scattered by 11B Nuclei at Different Energies

Elastic scattering of Protons and deuterons from 11B nuclei at different p, d energies have been analyzed within the framework of optical model code (ECIS88). The elastic scattering of 3He+11B nuclear system at different 3He energies have been analyzed using double folding model code (FRESCO). The real potential obtained from the folding model was supplemented by a phenomenological imaginary potential, and during the fitting process the real potential was normalized and the imaginary potential optimized. Volumetric integrals of the real and imaginary potential depths (JR, JW) have been calculated for 3He+11B system. The agreement between the experimental data and the theoretical calculations in the whole angular range is fairly good. Normalization factor Nr is calculated in the range between 0.70 and 1.236.

Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleonnucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.