Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Elastic scattering of α-particles from 9Be and 11B
nuclei at different alpha energies have been analyzed. Optical model
parameters (OMPs) of α-particles elastic scattering by these nuclei at
different energies have been obtained. In the present calculations, the
real part of the optical potential are derived by folding of nucleonnucleon
(NN) interaction into nuclear matter density distribution of
the projectile and target nuclei using computer code FRESCO. A
density-dependent version of the M3Y interaction (CDM3Y6), which
is based on the G-matrix elements of the Paris NN potential, has been
used. Volumetric integrals of the real and imaginary potential depth
(JR, JW) have been calculated and found to be energy dependent.
Good agreement between the experimental data and the theoretical
predictions in the whole angular range. In double folding (DF)
calculations, the obtained normalization coefficient Nr is in the range
0.70–1.32.




References:
[1] SH. Hamada, N. Burtebayev and N. Amangeld, International Journal of
Modern Physics E, 22 (2013) 1350058.
[2] H. Abele et al., Z. Phys. A - Atomic Nuclei 326 (1987) 373-381.
[3] G. R. Satchler and W. G. love, Phys. Rep. 55(1979)183.
[4] H. Feshbach, Theoretical Nuclear Physics, Vol. II (Wiley, New York,
1992).
[5] M. E. Brandan and G. R. Satchler, Phys. Rep. 285 (1997) 143.
[6] G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys.
A284 (1977) 399.
[7] N. Anantaraman, H. Toki, and G. F. Bertsch, Nucl. Phys. A398 (1983)
269.
[8] D. A. Goldberg, S. M. Smith, H. G. Pugh, P. G. Roos, and N. S. Wall,
Phys. Rev. C 7(1973)1938.
[9] D. A. Goldberg, S. M. Smith, and G. F. Burdzik, Phys. Rev. C 10(1974)
1362.
[10] H. G. Bohlen, M. R. Clover, G. Ingold, H. Lettau, and W. von Oertzen,
Z. Phys. A 308 (1982) 121.
[11] H. G. Bohlen et al, Z. Phys. A 322 (1985)241.
[12] E. Stiliaris et al, Phys. Lett. B223 (1989)291.
[13] A. A. Ogloblin, Dao T. Khoa, Y. Kondo, Yu. A. Glukhov, A.S.
Dem’yanova, M. V. Rozhkov, G. R. Satchler, and S. A. Goncharov,
Phys. Rev. C 57(1998)1797.
[14] A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and A.
Budzanowski, Nucl. Phys. A384 (1982) 65. [15] Dao T. Khoa and W. von Oertzen, Phys. Lett. B 304 (1993) 8.
[16] Dao T. Khoa and W. von Oertzen, Phys. Lett. B 342 (1995) 6.
[17] H. A. Bethe, Annu. Rev. Nucl. Sci. 21(1971)93; W. D. Myers, Nucl.
Phys. A204 (1973) 465.
[18] Dao T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56
(1997) 954.
[19] Dao T. Khoa et al, Phys. Rev. Lett. 74(1995)34.
[20] N. Burtebaev et al, Physics of Atomic Nuclei, 68 (2005) pp. 1303–1313.
[21] J.D.GOSS et al., physical review C, 7(1973). NEW.
[22] T. Stovall, J. Goldemberg and D. B. Isabelle, Nucl. Phys. 86 (1966) 225.
[23] D. T. Khoa et al., J. Phys. G: Nucl. Part. Phys. 34 (2007) R111.
[24] Takuji Yanabu, Sukeaki Yamashita, Shigeru Kakigi, Dai-Ca Nguyen,
Kiyohiko Takimoto, Yasumasa Yamada, and Kouya Ogino, Phys. Soc.
Jpn. 19(1964) p. 1818-1823.
[25] N. Burtebaev, Voprosy Atomn. Nauki i Tekhniki, Ser. Fiz. Yad. Reak.,
2002 (2002) p.137.
[26] Robert G. Summers-Gill, Phys. Rev. 109 (1958) 591.
[27] A. E. Denisov, R. P. Kolalis, V. S. Sadkovsky and G. A. Feofilov,
Yadernaya Fizika, 24(1976) p.249
[28] I. J. Thompson, Comput. Phys. Rep. 167 (1988) 7.