Processing Web-Cam Images by a Neuro-Fuzzy Approach for Vehicular Traffic Monitoring

Traffic management in an urban area is highly facilitated by the knowledge of the traffic conditions in every street or highway involved in the vehicular mobility system. Aim of the paper is to propose a neuro-fuzzy approach able to compute the main parameters of a traffic system, i.e., car density, velocity and flow, by using the images collected by the web-cams located at the crossroads of the traffic network. The performances of this approach encourage its application when the traffic system is far from the saturation. A fuzzy model is also outlined to evaluate when it is suitable to use more accurate, even if more time consuming, algorithms for measuring traffic conditions near to saturation.

Perceptions of Health Risks amongst Tertiary Education Students in Mauritius

A personal estimate of a health risk may not correspond to a scientific assessment of the health risk. Hence, there is a need to investigate perceived health risks in the public. In this study, a young, educated and healthy group of people from a tertiary institute were questioned about their health concerns. Ethics clearance was obtained and data was collected by means of a questionnaire. 362 students participated in the study. Tobacco use, heavy alcohol drinking, illicit drugs, unsafe sex and potential carcinogens were perceived to be the five greatest threats to health in this cohort. On the other hand natural health products, unemployment, unmet contraceptive needs, family violence and homelessness were felt to be the least perceived health risks. Nutrition-related health risks as well as health risks due to physical inactivity and obesity were not perceived as major health threats. Such a study of health perceptions may guide health promotion campaigns.

Perceptions of Health Status and Lifestyle Health Behaviors of Poor People in Mauritius

In Mauritius, much emphasis is put on measures to combat the high prevalence of non-communicable diseases (NCDs). Health promotion campaigns for the adoption of healthy behaviors and screening programs are done regularly by local authorities and NCD surveys are carried out at intervals. However, the health behaviors of the poor have not been investigated so far. This study aims to give an insight on the perceptions of health status and lifestyle health behaviors of poor people in Mauritius. A crosssectional study among 83 persons benefiting from social aid in a selected urban district was carried out. Results showed that 51.8% of respondents perceived that they had good health status. 57.8% had no known NCD whilst 25.3% had hypertension, followed by diabetes (16.9%), asthma (9.6%) and heart disease (7.2%).They had low smoking (10.8%) and alcohol consumption (6.0%) as well as high physical activity prevalence (54.2%). These results were significantly different from the NCD survey carried out in the general population. Consumption of vegetables in the study was high. Overweight and obesity trends were however similar to the NCD survey report 2009. These findings contrast with other international studies showing poor people having poor perceptions of health status and unhealthy behavioral choices. Whether these positive health behaviors of poor people in Mauritius arise out of choice or whether it is because the alternative behavior is too costly remains to be investigated further.

Hi-Fi Traffic Clearance Technique for Life Saving Vehicles using Differential GPS System

This paper may be considered as combination of both pervasive computing and Differential GPS (global positioning satellite) which relates to control automatic traffic signals in such a way as to pre-empt normal signal operation and permit lifesaving vehicles. Before knowing the arrival of the lifesaving vehicles from the signal there is a chance of clearing the traffic. Traffic signal preemption system includes a vehicle equipped with onboard computer system capable of capturing diagnostic information and estimated location of the lifesaving vehicle using the information provided by GPS receiver connected to the onboard computer system and transmitting the information-s using a wireless transmitter via a wireless network. The fleet management system connected to a wireless receiver is capable of receiving the information transmitted by the lifesaving vehicle .A computer is also located at the intersection uses corrected vehicle position, speed & direction measurements, in conjunction with previously recorded data defining approach routes to the intersection, to determine the optimum time to switch a traffic light controller to preemption mode so that lifesaving vehicles can pass safely. In case when the ambulance need to take a “U" turn in a heavy traffic area we suggest a solution. Now we are going to make use of computerized median which uses LINKED BLOCKS (removable) to solve the above problem.

Blast Induced Ground Shock Effects on Pile Foundations

Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.

Effect of Concentration of Sodium Borohydrate on the Synthesis of Silicon Nanoparticles via Microemulsion Route

The effect of concentration of reduction agent of sodium borohydrate (NaBH4) on the properties of silicon nanoparticles synthesized via microemulsion route is reported. In this work, the concentration of the silicon tetrachloride (SiCl4) that served as silicon source with sodium hydroxide (NaOH) and polyethylene glycol (PEG) as stabilizer and surfactant, respectively, are keep fixed. Four samples with varied concentration of NaBH4 from 0.05 M to 0.20 M were synthesized. It was found that the lowest concentration of NaBH4 gave better formation of silicon nanoparticles.

Molecular Dynamics Simulation of Annular Flow Boiling in a Microchannel with 70000 Atoms

Molecular dynamics simulation of annular flow boiling in a nanochannel with 70000 particles is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F ext ranging from 1to12PN (PN= Pico Newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid-vapor interface. Also, the results show that due to the relatively strong influence of surface tension in small channel, the interface between the liquid film and vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore.

Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis

We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.

Dynamic Traffic Simulation for Traffic Congestion Problem Using an Enhanced Algorithm

Traffic congestion has become a major problem in many countries. One of the main causes of traffic congestion is due to road merges. Vehicles tend to move slower when they reach the merging point. In this paper, an enhanced algorithm for traffic simulation based on the fluid-dynamic algorithm and kinematic wave theory is proposed. The enhanced algorithm is used to study traffic congestion at a road merge. This paper also describes the development of a dynamic traffic simulation tool which is used as a scenario planning and to forecast traffic congestion level in a certain time based on defined parameter values. The tool incorporates the enhanced algorithm as well as the two original algorithms. Output from the three above mentioned algorithms are measured in terms of traffic queue length, travel time and the total number of vehicles passing through the merging point. This paper also suggests an efficient way of reducing traffic congestion at a road merge by analyzing the traffic queue length and travel time.

Experimental and Statistical Study of Nonlinear Effect of Carbon Nanotube on Mechanical Properties of Polypropylene Composites

In this study concept of experimental design is successfully applied for the determination of optimum condition to produce PP/SWCNT (Polypropylene/Single wall carbon nanotube) nanocomposite. Central composite design as one of experimental design techniques is employed for the optimization and statistical determination of the significant factors influencing on the tensile modulus and yield stress as mechanical properties of this nanocomposite. The significant factors are SWCNT weight fraction and acid treatment time for functionalizing the nanoparticles. Optimum conditions are in 0.7 % of SWCNT weight fraction and 210 min as acid treatment time for 1112.75 ± 28 MPa as maximum tensile modulus and in 216 min and 0.65 % as acid treatment time and SWCNT weight fraction respectively for 40.26 ± 0.3 MPa as maximum yield stress. Also after setting new experiments for test these optimum conditions, found excelent agreement with predicted values.

A New Analytical Approach to Reconstruct Residual Stresses Due to Turning Process

A thin layer on the component surface can be found with high tensile residual stresses, due to turning operations, which can dangerously affect the fatigue performance of the component. In this paper an analytical approach is presented to reconstruct the residual stress field from a limited incomplete set of measurements. Airy stress function is used as the primary unknown to directly solve the equilibrium equations and satisfying the boundary conditions. In this new method there exists the flexibility to impose the physical conditions that govern the behavior of residual stress to achieve a meaningful complete stress field. The analysis is also coupled to a least squares approximation and a regularization method to provide stability of the inverse problem. The power of this new method is then demonstrated by analyzing some experimental measurements and achieving a good agreement between the model prediction and the results obtained from residual stress measurement.

Modernization of the People's Republic of China: History and Complexities

The aim of this paper is to investigate a process of modernization of the People-s Republic of China. The theme of scientific research is interesting, first, because the Chinese model of development is recognized as successful and most dynamically developing. They are obliged by these successes of the modernization spent in the country. Economy modernization as the basic motive power of progress of the country is a priority direction of development in the Republic of Kazakhstan. So the example of successful development modernization processes in China can be rather useful to use in working out of the Kazakhstan national reforms.

Efficient and Effective Gabor Feature Representation for Face Detection

We here propose improved version of elastic graph matching (EGM) as a face detector, called the multi-scale EGM (MS-EGM). In this improvement, Gabor wavelet-based pyramid reduces computational complexity for the feature representation often used in the conventional EGM, but preserving a critical amount of information about an image. The MS-EGM gives us higher detection performance than Viola-Jones object detection algorithm of the AdaBoost Haar-like feature cascade. We also show rapid detection speeds of the MS-EGM, comparable to the Viola-Jones method. We find fruitful benefits in the MS-EGM, in terms of topological feature representation for a face.

Enhanced Genetic Algorithm Approach for Security Constrained Optimal Power Flow Including FACTS Devices

This paper presents a genetic algorithm based approach for solving security constrained optimal power flow problem (SCOPF) including FACTS devices. The optimal location of FACTS devices are identified using an index called overload index and the optimal values are obtained using an enhanced genetic algorithm. The optimal allocation by the proposed method optimizes the investment, taking into account its effects on security in terms of the alleviation of line overloads. The proposed approach has been tested on IEEE-30 bus system to show the effectiveness of the proposed algorithm for solving the SCOPF problem.

A Step-wise Zoom Technique for Exploring Image-based Virtual Reality Applications

Existing image-based virtual reality applications allow users to view image-based 3D virtual environment in a more interactive manner. User could “walkthrough"; looks left, right, up and down and even zoom into objects in these virtual worlds of images. However what the user sees during a “zoom in" is just a close-up view of the same image which was taken from a distant. Thus, this does not give the user an accurate view of the object from the actual distance. In this paper, a simple technique for zooming in an object in a virtual scene is presented. The technique is based on the 'hotspot' concept in existing application. Instead of navigation between two different locations, the hotspots are used to focus into an object in the scene. For each object, several hotspots are created. A different picture is taken for each hotspot. Each consecutive hotspot created will take the user closer to the object. This will provide the user with a correct of view of the object based on his proximity to the object. Implementation issues and the relevance of this technique in potential application areas are highlighted.

Residual Stresses in Thermally Sprayed Gas Turbine Components

In this paper, the residual stress of thermal spray coatings in gas turbine component by curvature method has been studied. The samples and shaft were coated by hard WC-12Co cermets using high velocity oxy fuel (HVOF) after preparation in same conditions. The curvature of coated samples was measured by using of coordinate measurement machine (CMM). The metallurgical and Tribological studies has been made on the coated shaft using optical microscopy and scanning electron microscopy (SEM)

Understanding Cultural Dissonance to Enhance Higher Education Academic Success

This research documents a qualitative study of selected Native Americans who have successfully graduated from mainstream higher education institutions. The research framework explored the Bicultural Identity Formation Model as a means of understanding the expressions of the students' adaptations to mainstream education. This approach lead to an awareness of how the participants in the study used specific cultural and social strategies to enhance their educational success and also to an awareness of how they coped with cultural dissonance to achieve a new academic identity. Research implications impact a larger audience of bicultural, foreign, or international students experiencing cultural dissonance.

Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control

This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presented

Performance Evaluation and Modeling of a Conical Plunging Jet Aerator

Aeration by a plunging water jet is an energetically attractive way to effect oxygen-transfer than conventional oxygenation systems. In the present study, a new type of conical shaped plunging aeration device is fabricated to generate hollow inclined ined plunging jets (jet plunge angle of π/3 ) to investigate its oxygen transfer capacity. The results suggest that the volumetric oxygen-transfer coefficient and oxygen-transfer efficiency of the conical plunging jet aerator are competitive with other types of aeration systems. Relationships of volumetric oxygen-transfer coefficient with jet power per unit volume and jet parameters are also proposed. The suggested relationships predict the volumetric oxygentransfer coefficient within a scatter of ± 15% . Further, the application of Support Vector Machines on the experimental data revealed its utility in the prediction of volumetric oxygen-transfer coefficient and development of conical plunging jet aerators.

Marangoni Convection in a Fluid Layer with Internal Heat Generation

In this paper we use classical linear stability theory to investigate the effects of uniform internal heat generation on the onset of Marangoni convection in a horizontal layer of fluid heated from below. We use a analytical technique to obtain the close form analytical expression for the onset of Marangoni convection when the lower boundary is conducting with free-slip condition. We show that the effect of increasing the internal heat generation is always to destabilize the layer.