Modeling of Single Bay Precast Residential House Using Ruaumoko 2D Program

Precast residential houses are normally constructed in Malaysia using precast shear-key wall panel and this panel is designed using BS8110 where there is no provision for earthquake. However, the safety of this house under moderate and strong earthquake is still questionable. Consequently, the full-scale of residential house are designed, constructed, tested and analyzed under in-plane lateral quasi-static cyclic loading. Hysteresis loops are plotted based on the experimental work and compared with modeling of hysteresis loops using HYSTERES in RUAUMOKO 2D program. Modified Takeda hysteresis model is chosen to behave a similar pattern with experimental work. This program will display the earthquake excitations, spectral displacements, pseudo spectral acceleration, mode shape and deformation of the structure. It can be concluded that this building is suffering severe cracks and damage under moderate and severe earthquake.

Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Preparing Project Managers to Achieve Project Success - Human Management Perspective

The evolution in project management was triggered by the changes in management philosophy and practices in order to maintain competitive advantage and continuous success in the field. The purpose of this paper is to highlight the practicality of cognitive style and unlearning approach in influencing the achievement of project success by project managers. It introduces the concept of planning, knowing and creating style from cognitive style field in the light of achieving time, cost, quality and stakeholders appreciation in project success context. Further it takes up a discussion of the unlearning approach as a moderator in enhancing the relationship between cognitive style and project success. The paper bases itself on literature review from established disciplines like psychology, sociology and philosophy regarding cognitive style, unlearning and project success in general. The analysis and synthesis of literature in the subject area a conceptual paper is utilized as the basis of future research to form a comprehensive framework for project managers in enhancing the project management competency.