Abstract: Pattern recognition is the research area of Artificial
Intelligence that studies the operation and design of systems that
recognize patterns in the data. Important application areas are image
analysis, character recognition, fingerprint classification, speech
analysis, DNA sequence identification, man and machine
diagnostics, person identification and industrial inspection. The
interest in improving the classification systems of data analysis is
independent from the context of applications. In fact, in many
studies it is often the case to have to recognize and to distinguish
groups of various objects, which requires the need for valid
instruments capable to perform this task. The objective of this article
is to show several methodologies of Artificial Intelligence for data
classification applied to biomedical patterns. In particular, this work
deals with the realization of a Computer-Aided Detection system
(CADe) that is able to assist the radiologist in identifying types of
mammary tumor lesions. As an additional biomedical application of
the classification systems, we present a study conducted on blood
samples which shows how these methods may help to distinguish
between carriers of Thalassemia (or Mediterranean Anaemia) and
healthy subjects.