Some Aspects of the Sustainable Development in Romania

The paper presents the Romanian realities and perspectives from the point of view of reaching the sustainable development model in the context of the recent accession to the European Union, based on the analysis of the indicators listed in the EU Sustainable Development Strategy. The analysis of the economic-social potential for sustainable development and of the environment aspects show that the objectives stipulated in the renewed EU Sustainable Development Strategy of 2006 can be reached, but an extra effort must be put-in in order to overcome the existing substantial gaps in several areas in relation to the developed countries of the EU. The paper-s conclusions show that even if sustainable development is not an easy target to reach in Romania, there are resources and a growing potential, which can lead to sustainable development if used rationally.

Software Digital Phase-locked Loop for Induction Motor Speed Control

This article deals to describe the simulation investigation of the digital phase locked loop implemented in software (SDPLL). SDPLL has been developed for speed drives of an induction motor in scalar strategy. A drive was implemented and simulation results are presented to verify the robustness against motor parameter variation and regulation speed.

A New Self-Adaptive EP Approach for ANN Weights Training

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

The Use of Dynamically Optimised High Frequency Moving Average Strategies for Intraday Trading

This paper is motivated by the aspect of uncertainty in financial decision making, and how artificial intelligence and soft computing, with its uncertainty reducing aspects can be used for algorithmic trading applications that trade in high frequency. This paper presents an optimized high frequency trading system that has been combined with various moving averages to produce a hybrid system that outperforms trading systems that rely solely on moving averages. The paper optimizes an adaptive neuro-fuzzy inference system that takes both the price and its moving average as input, learns to predict price movements from training data consisting of intraday data, dynamically switches between the best performing moving averages, and performs decision making of when to buy or sell a certain currency in high frequency.

Adaptive Impedance Control for Unknown Time-Varying Environment Position and Stiffness

This study is concerned with a new adaptive impedance control strategy to compensate for unknown time-varying environment stiffness and position. The uncertainties are expressed by Function Approximation Technique (FAT), which allows the update laws to be derived easily using Lyapunov stability theory. Computer simulation results are presented to validate the effectiveness of the proposed strategy.