Assessment of In-Situ Water Sensitive Urban Design Elements

Water Sensitive Urban Design (WSUD) features are increasingly used to treat and manage polluted stormwater runoff in urbanised areas. It is important to monitor and evaluate the effectiveness of the infrastructure in achieving their intended performance targets after constructing and operating these features overtime. The paper presents the various methods of analysis used to assess the effectiveness of the in-situ WSUD features, such as: onsite visual inspections during operational and non operational periods, maintenance audits and periodic water quality testing. The results will contribute to a better understanding of the operational and maintenance needs of in-situ WSUD features and assist in providing recommendations to better manage life cycle performance.

Evaluation of Drainage Conditions along Selected Roadways in Amman

Roadways in Amman city face many problems consequent upon poor drainage systems. Evaluation tools are necessary to identify those roads needing improvement in their drainage system, and those needing regular maintenance. This work aims at evaluating drainage conditions in selected roadways in Amman city with the intent of identifying the problems encountered in their drainage systems. Three sites in the vicinity of Amman city have been selected and then inspected via several field visits to determine the state of their existing drainage systems and define the major problems encountered in these systems. The evaluation tool used in this study is based on visual inspection supported by photographs that depicted the defined problems. Following the field assessment, the drainage system in each road was rated as excellent, fair, good, or poor. The study reveals that more than 60% of the roadways in the selected sites were in poor drainage conditions, which lead to tremendous environmental problems. This assessment serves as a guide for local decision makers to help plan for the maintenance of Amman city roadways drainage systems, and propose ways of managing the associated problems.

Investigation into Heterotrophic Activities and Algal Biomass in Surface Flow Stormwater Wetlands

Stormwater wetlands have been mainly designed in an empirical approach for water quality improvement, with little quantitative understanding of the internal microbial processes. This study investigated into heterotrophic bacterial production rate, heterotrophic bacterial mineralization percentage, and algal biomass in hypertrophic and eutrophic surface flow stormwater wetlands. Compared to a nearby wood leachate treatment wetland, the stormwater wetlands had much higher chlorophyll-a concentrations. The eutrophic stormwater wetland had improved water quality, whereas the hypertrophic stormwater wetland had degraded water quality. Heterotrophic bacterial activities in water were limited in the stormwater wetlands due to competition of algal growth for nutrients. The relative contribution of biofilms to the overall heterotrophic activities was higher in the stormwater wetlands than that in the wood leachate treatment wetland.

Application of Build-up and Wash-off Models for an East-Australian Catchment

Estimation of stormwater pollutants is a pre-requisite for the protection and improvement of the aquatic environment and for appropriate management options. The usual practice for the stormwater quality prediction is performed through water quality modeling. However, the accuracy of the prediction by the models depends on the proper estimation of model parameters. This paper presents the estimation of model parameters for a catchment water quality model developed for the continuous simulation of stormwater pollutants from a catchment to the catchment outlet. The model is capable of simulating the accumulation and transportation of the stormwater pollutants; suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) from a particular catchment. Rainfall and water quality data were collected for the Hotham Creek Catchment (HTCC), Gold Coast, Australia. Runoff calculations from the developed model were compared with the calculated discharges from the widely used hydrological models, WBNM and DRAINS. Based on the measured water quality data, model water quality parameters were calibrated for the above-mentioned catchment. The calibrated parameters are expected to be helpful for the best management practices (BMPs) of the region. Sensitivity analyses of the estimated parameters were performed to assess the impacts of the model parameters on overall model estimations of runoff water quality.

Linking Urban Planning and Water Planning to Achieve Sustainable Development and Liveability Outcomes in the New Growth Areas of Melbourne, Australia

The city of Melbourne in Victoria, Australia, provides a number of examples of how a growing city can integrate urban planning and water planning to achieve sustainable urban development, environmental protection, liveability and integrated water management outcomes, and move towards becoming a “Water Sensitive City". Three examples are provided - the development at Botanic Ridge, where a 318 hectare residential development is being planned and where integrated water management options are being implemented using a “triple bottom line" sustainability investment approach; the Toolern development, which will capture and reuse stormwater and recycled water to greatly reduce the suburb-s demand for potable water, and the development at Kalkallo where a 1,200 hectare industrial precinct development is planned which will merge design of the development's water supply, sewerage services and stormwater system. The Paper argues that an integrated urban planning and water planning approach is fundamental to creating liveable, vibrant communities which meet social and financial needs while being in harmony with the local environment. Further work is required on developing investment frameworks and risk analysis frameworks to ensure that all possible solutions can be assessed equally.

Evaluation of Green Roof System for Green Building Projects in Malaysia

The implementations of green roof have been widely used in the developed countries such as Germany, United Kingdom, United States and Canada. Green roof have many benefits such as aesthetic and economic value, ecological gain which are optimization of storm water management, urban heat island mitigation and energy conservation. In term of pollution, green roof can control the air and noise pollution in urban cities. The application of green roof in Malaysian building has been studied with the previous work of green roof either in Malaysia or other Asian region as like Indonesia, Singapore, Thailand, Taiwan and several other countries that have similar climate and environment as in Malaysia. These technologies of adapting green roof have been compared to the Green Building Index (GBI) of Malaysian buildings. The study has concentrated on the technical aspect of green roof system having focused on i) waste & recyclable materials ii) types of plants and method of planting and iii) green roof as tool to reduce storm water runoff. The finding of these areas will be compared to the suitability in achieving good practice of the GBI in Malaysia. Results show that most of the method are based on the countries own climate and environment. This suggests that the method of using green roof must adhere to the tropical climate of Malaysia. Suggestion of this research will be viewed in term of the sustainability of the green roof. Further research can be developed to implement the best method and application in Malaysian climate especially in urban cities and township.

Runoff Quality and Pollution Loading from a Residential Catchment in Miri, Sarawak

Urban non-point source (NPS) pollution for a residential catchment in Miri, Sarawak was investigated for two storm events in 2011. Runoff from two storm events were sampled and tested for water quality parameters including TSS, BOD5, COD, NH3-N, NO3-N, NO2-N, P and Pb. Concentration of the water quality parameters was found to vary significantly between storms and the pollutant of concern was found to be NO3-N, TSS, COD and Pb. Results were compared to the Interim National Water Quality Standards for Malaysia (INWQS),and the stormwater runoff from the study can be classified as polluted, exceeding class III water quality, especially in terms of TSS, COD, and NH3-N with maximum EMCs of 158, 135, and 2.17 mg/L, respectively.

Toward Integrative Stormwater Design in Urban Spaces

The design requirements for successful human accommodation in urban spaces are well known; and the range of facilities available for meeting urban water quality and quantity requirements is also well established. Their competing requirements must be reconciled in order for urban spaces to be successful for both. This paper outlines the separate human and water imperatives and their interactions in urban spaces. Stormwater management facilities- relative potential contributions to urban spaces are contrasted, and design choices for achieving those potentials are described. This study uses human success of urban space as the evaluative criterion of stormwater amenity: human values call on stormwater facilities to contribute to successful human spaces. Placing water-s contribution under the overall idea of successful urban space is an evolution from previous subjective evaluations. The information is based on photographs and notes from approximately 1,000 stormwater facilities and urban sites collected during the last 35 years in North America and overseas, and the author-s experience on multi-disciplinary design teams. This conceptual study combines the disciplinary roles of engineering, landscape architecture, and sociology in effecting successful urban design.