Locating Critical Failure Surface in Rock Slope Stability with Hybrid Model Based on Artificial Immune System and Cellular Learning Automata (CLA-AIS)

Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular learning automata is proposed. The results show that the algorithm is an effective and efficient optimization method with a high level of confidence rate.

Enhancement of Shape Description and Representation by Slope

Representation and description of object shapes by the slopes of their contours or borders are proposed. The idea is to capture the essence of the features that make it easier for a shape to be stored, transmitted, compared and recognized. These features must be independent of translation, rotation and scaling of the shape. A approach is proposed to obtain high performance, efficiency and to merge the boundaries into sequence of straight line segments with the fewest possible segments. Evaluation on the performance of the proposed method is based on its comparison with established method of object shape description.

A Shallow Water Model for Computing Inland Inundation Due to Indonesian Tsunami 2004 Using a Moving Coastal Boundary

In this paper, a two-dimensional mathematical model is developed for estimating the extent of inland inundation due to Indonesian tsunami of 2004 along the coastal belts of Peninsular Malaysia and Thailand. The model consists of the shallow water equations together with open and coastal boundary conditions. In order to route the water wave towards the land, the coastal boundary is treated as a time dependent moving boundary. For computation of tsunami inundation, the initial tsunami wave is generated in the deep ocean with the strength of the Indonesian tsunami of 2004. Several numerical experiments are carried out by changing the slope of the beach to examine the extent of inundation with slope. The simulated inundation is found to decrease with the increase of the slope of the orography. Correlation between inundation / recession and run-up are found to be directly proportional to each other.

Influence of the Entropic Parameter on the Flow Geometry and Morphology

The necessity of updating the numerical models inputs, because of geometrical and resistive variations in rivers subject to solid transport phenomena, requires detailed control and monitoring activities. The human employment and financial resources of these activities moves the research towards the development of expeditive methodologies, able to evaluate the outflows through the measurement of more easily acquirable sizes. Recent studies highlighted the dependence of the entropic parameter on the kinematical and geometrical flow conditions. They showed a meaningful variability according to the section shape, dimension and slope. Such dependences, even if not yet well defined, could reduce the difficulties during the field activities, and also the data elaboration time. On the basis of such evidences, the relationships between the entropic parameter and the geometrical and resistive sizes, obtained through a large and detailed laboratory experience on steady free surface flows in conditions of macro and intermediate homogeneous roughness, are analyzed and discussed.

Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall

Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.

[Ca(2,2'-bipyridine)3]2+ -Montmorillonite: A Potentiometric Sensor for Sulfide ion

Sulfide ion (S2-) is one of the most important ions to be monitored due to its high toxicity, especially for aquatic organisms. In this work, [Ca(2,2'-bipyridine)3]2+-intercalated montmorillonite was prepared and used as a sensor to construct a potentiometric electrode to measure sulfide ion in solution. The formation of [Ca(2,2'- bipyridine)3]2+ in montmorillonite was confirmed by Fourier Transform Infrared spectra. The electrode worked well at pH 4-12 and 4-10 in sulfide solution 10-2 M and 10-3 M, respectively, in terms of Nernstian slope. The sensor gave good precision and low cost.

Analysis of Highway Slope Failure by an Application of the Stereographic Projection

The mountain road slope failures triggered by earthquake activities and torrential rain namely to create the disaster. Province Road No. 24 is a main route to the Wutai Township. The area of the study is located at the mileages between 46K and 47K along the road. However, the road has been suffered frequent damages as a result of landslide and slope failures during typhoon seasons. An understanding of the sliding behaviors in the area appears to be necessary. Slope failures triggered by earthquake activities and heavy rainfalls occur frequently. The study is to understand the mechanism of slope failures and to look for the way to deal with the situation. In order to achieve these objectives, this paper is based on theoretical and structural geology data interpretation program to assess the potential slope sliding behavior. The study showed an intimate relationship between the landslide behavior of the slopes and the stratum materials, based on structural geology analysis method to analysis slope stability and finds the slope safety coefficient to predict the sites of destroyed layer. According to the case study and parameter analyses results, the slope mainly slips direction compared to the site located in the southeast area. Find rainfall to result in the rise of groundwater level is main reason of the landslide mechanism. Future need to set up effective horizontal drain at corrective location, that can effective restrain mountain road slope failures and increase stability of slope.

A Novel Source/Drain-to-Gate Non-overlap MOSFET to Reduce Gate Leakage Current in Nano Regime

In this paper, gate leakage current has been mitigated by the use of novel nanoscale MOSFET with Source/Drain-to-Gate Non-overlapped and high-k spacer structure for the first time. A compact analytical model has been developed to study the gate leakage behaviour of proposed MOSFET structure. The result obtained has found good agreement with the Sentaurus Simulation. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. It is found that optimal Source/Drain-to-Gate Non-overlapped and high-k spacer structure has reduced the gate leakage current to great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and DIBL characteristic. It is concluded that this structure solves the problem of high leakage current without introducing the extra series resistance.