Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine

In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models. This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.

Analysis of a Singular Perturbed Synchronous Generator with a Bond Graph Approach

An analysis of a synchronous generator in a bond graph approach is proposed. This bond graph allows to determine the simplified models of the system by using singular perturbations. Firstly, the nonlinear bond graph of the generator is linearized. Then, the slow and fast state equations by applying singular perturbations are obtained. Also, a bond graph to get the quasi-steady state of the slow dynamic is proposed. In order to verify the effectiveness of the singularly perturbed models, simulation results of the complete system and reduced models are shown.

The Fundamental Reliance of Iterative Learning Control on Stability Robustness

Iterative learning control aims to achieve zero tracking error of a specific command. This is accomplished by iteratively adjusting the command given to a feedback control system, based on the tracking error observed in the previous iteration. One would like the iterations to converge to zero tracking error in spite of any error present in the model used to design the learning law. First, this need for stability robustness is discussed, and then the need for robustness of the property that the transients are well behaved. Methods of producing the needed robustness to parameter variations and to singular perturbations are presented. Then a method involving reverse time runs is given that lets the world behavior produce the ILC gains in such a way as to eliminate the need for a mathematical model. Since the real world is producing the gains, there is no issue of model error. Provided the world behaves linearly, the approach gives an ILC law with both stability robustness and good transient robustness, without the need to generate a model.