Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces

Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.

ELISA Based hTSH Assessment Using Two Sensitive and Specific Anti-hTSH Polyclonal Antibodies

Production of specific antibody responses against hTSH is a cumbersome process due to the high identity between the hTSH and the other members of the glycoprotein hormone family (FSH, LH and HCG) and the high identity between the human hTSH and host animals for antibody production. Therefore, two polyclonal antibodies were purified against two recombinant proteins. Four possible ELISA tests were designed based on these antibodies. These ELISA tests were checked against hTSH and other glycoprotein hormones, and their sensitivity and specificity were assessed. Bioinformatics tools were used to analyze the immunological properties. After the immunogen region selection from hTSH protein, c terminal of B hTSH was selected and applied. Two recombinant genes, with these cut pieces (first: two repeats of C terminal of B hTSH, second: tetanous toxin+B hTSH C terminal), were designed and sub-cloned into the pET32a expression vector. Standard methods were used for protein expression, purification, and verification. Thereafter, immunizations of the white New Zealand rabbits were performed and the serums of them were used for antibody titration, purification and characterization. Then, four ELISA tests based on two antibodies were employed to assess the hTSH and other glycoprotein hormones. The results of these assessments were compared with standard amounts. The obtained results indicated that the desired antigens were successfully designed, sub-cloned, expressed, confirmed and used for in vivo immunization. The raised antibodies were capable of specific and sensitive hTSH detection, while the cross reactivity with the other members of the glycoprotein hormone family was minimum. Among the four designed tests, the test in which the antibody against first protein was used as capture antibody, and the antibody against second protein was used as detector antibody did not show any hook effect up to 50 miu/l. Both proteins have the ability to induce highly sensitive and specific antibody responses against the hTSH. One of the antibody combinations of these antibodies has the highest sensitivity and specificity in hTSH detection.

Human Elastin-derived Biomimetic Coating Surface to Support Cell Growth

A new sythetic gene coding for a Human Elastin-Like Polypeptide was constructed and expressed. The recombinant product was tested as coating agent to realize a surface suitable for cell growth. Coatings showed peculiar features and different human cell lines were seeded and cultured. All cell lines tested showed to adhere and proliferate on this substrate that has been shown also to exert a specific effect on cells, depending on cell type.

A Novel Cytokine Derived Fusion Tag for Over- Expression of Heterologous Proteins in E. coli

We report a novel fusion tag for expressing recombinant proteins in E. coli. The fusion tag is the C-terminus part of the human GMCSF gene comprising 45 amino acids, which aid in over expression of otherwise non expressible genes. Expression of hIFN a2b with this fusion tag also escapes the requirement of rare codons for expression. This is also a first report of a small fusion tag of human origin having affinity to heparin sepharose column facilitating the purification of fusion protein.

Cloning and Over Expression of an Aspergillus niger XP Phytase Gene (phyA) in Pichia pastoris

A. niger XP isolated from Vietnam produces very low amount of acidic phytase with optimal pH at 2.5 and 5.5. The phytase production of this strain was successfully improved through gene cloning and expression. A 1.4 - kb DNA fragment containing the coding region of the phyA gene was amplified by PCR and inserted into the expression vector pPICZαA with a signal peptide α- factor, under the control of AOX1 promoter. The recombined plasmid was transformed into the host strain P. pastoris KM71H and X33 by electroporation. Both host strains could efficiently express and secret phytase. The multicopy strains were screened for over expression of phytase. All the selected multicopy strains of P. pastoris X33 were examined for phytase activity, the maximum phytase yield of 1329 IU/ml was obtained after 4 days of incubation in medium BMM. The recombinant protein with MW of 97.4 KW showed to be the only one protein secreted in the culture broth. Multicopy transformant P. pastoris X33 supposed to be potential candidate for producing the commercial preparation of phytase.

Production of H5N1 Hemagglutinin inTrichoplusia ni Larvae by a Novel Bi-cistronic Baculovirus Expression Vector

Highly pathogenic avian influenza (HPAI) H5N1 viruses have created demand for a cost-effective vaccine to prevent a pandemic of the disease. Here, we report that Trichoplusia ni (T. ni) larvae can act as a cost-effective bioreactor to produce recombinant HA5 (rH5HA) proteins as an potential effective vaccine for chickens. To facilitate the recombinant virus identification, virus titer determination and access the infected larvae, we employed the internal ribosome entry site (IRES) derived from Perina nuda virus (PnV, belongs to insect picorna like Iflavirus genus) to construct a bi-cistronic baculovirus expression vector that can express the rH5HA protein and enhanced green fluorescent protein (EGFP) simultaneously. Western blot analysis revealed that the 70 kDa rH5HA protein and partially cleaved products (40 kDa H5HA1) were generated in T. ni larvae infected with recombinant baculovirus carrying the H5HA gene. These data suggest that the baculovirus-larvae recombinant protein expression system could be a cost-effective platform for H5N1 vaccine production.