Estimating Reaction Rate Constants with Neural Networks

Solutions are proposed for the central problem of estimating the reaction rate coefficients in homogeneous kinetics. The first is based upon the fact that the right hand side of a kinetic differential equation is linear in the rate constants, whereas the second one uses the technique of neural networks. This second one is discussed deeply and its advantages, disadvantages and conditions of applicability are analyzed in the mirror of the first one. Numerical analysis carried out on practical models using simulated data, and our programs written in Mathematica.

Congo Red Photocatalytic Decolourization using Modified Titanium

A study concerning the photocatalytic decolourization of Congo red (CR) dye, over artificial UV irradiation is presented. Photocatalysts based on a commercial titanium dioxide (TiO2) modified with transition metals (Ni, Cu and Zn) were used. The dopage method used was wet impregnation. A TiO2 sample without salt was subjected to the same hydrothermal treatment to be used as reference. Congo red solutions to several pH conditions (natural and basic) were used to evaluate photocatalytic performance of each doped catalysts. Photodecolourization percentage was measured spectrofotrometically after 3 h of treatment to 499 nm as response variable. Kinetics investigations of photodegradation indicated that reactions obey to Langmuir-Hinshelwood model and pseudo–first order law. The rate constant studies of photocatalytic decolourization reactions for Zn–TiO2 and Cu–TiO2 photocatalysts indicated that in all cases the rate constant of the reaction was higher than that of TiO2 undoped. These results show that nature of the metal modifying the TiO2 influence on the efficiency of the photocatalyst evaluated in process. Ni does not present an additional effect compared with TiO2, while Zn enhances the photoactivity due to its electronic properties.

Potential of Agro-Waste Extracts as Supplements for the Continuous Bioremediation of Free Cyanide Contaminated Wastewater

Different agricultural waste peels were assessed for their suitability to be used as primary substrates for the bioremediation of free cyanide (CN-) by a cyanide-degrading fungus Aspergillus awamori isolated from cyanide containing wastewater. The bioremediated CN- concentration were in the range of 36 to 110 mg CN-/L, with Orange (C. sinensis) > Carrot (D. carota) > Onion (A. cepa) > Apple (M. pumila), being chosen as suitable substrates for large scale CN- degradation processes due to: 1) the high concentration of bioremediated CN-, 2) total reduced sugars released into solution to sustain the biocatalyst, and 3) minimal residual NH4- N concentration after fermentation. The bioremediation rate constants (k) were 0.017h-1 (0h < t < 24h), with improved bioremediation rates (0.02189h-1) observed after 24h. The averaged nitrilase activity was ~10 U/L.

A Numerical Model to Study the Rapid Buffering Approximation near an Open Ca2+ Channel for an Unsteady State Case

Chemical reaction and diffusion are important phenomena in quantitative neurobiology and biophysics. The knowledge of the dynamics of calcium Ca2+ is very important in cellular physiology because Ca2+ binds to many proteins and regulates their activity and interactions Calcium waves propagate inside cells due to a regenerative mechanism known as calcium-induced calcium release. Buffer-mediated calcium diffusion in the cytosol plays a crucial role in the process. A mathematical model has been developed for calcium waves by assuming the buffers are in equilibrium with calcium i.e., the rapid buffering approximation for a one dimensional unsteady state case. This model incorporates important physical and physiological parameters like dissociation rate, diffusion rate, total buffer concentration and influx. The finite difference method has been employed to predict [Ca2+] and buffer concentration time course regardless of the calcium influx. The comparative studies of the effect of the rapid buffered diffusion and kinetic parameters of the model on the concentration time course have been performed.

The Influence of Low Power Microwave Radiation on the Growth Rate of Listeria Monocytogenes

Variations in the growth rate constant of the Listeria monocytogenes bacterial species were determined at 37°C in irradiated environments and compared to the situation of a nonirradiated environment. The bacteria cells, contained in a suspension made of a nutrient solution of Brain Heart Infusion, were made to grow at different frequency (2.30e2.60 GHz) and power (0e400 mW) values, in a plug flow reactor positioned in the irradiated environment. Then the reacting suspension was made to pass into a cylindrical cuvette where its optical density was read every 2.5 minutes at a wavelength of 600 nm. The obtained experimental data of optical density vs. time allowed the bacterial growth rate constant to be derived; this was found to be slightly influenced by microwave power, but not by microwave frequency; in particular, a minimum value was found for powers in the 50e150 mW field.

Study of Kinetics Incorporation of Ag with TCPP

The Kinetics formation of labile Complex Ag (I) tetra (p-carboxyphenyl) porphyrin, was investigated at 25oC and I=0.1M (NaNO3). By spectrophotometric titration, the composition ratio of the complex was established to be 2:1 (Ag : H2TCPP). The equilibrium constant, K, was found to be log 10-6.53. Binding of the first Ag (I) was found to be rate determining step with rate constant, k1= 4.67×102 . A plausible mechanism is discussed. We discus theoretically why Ag(I)2TCPP is unstable.

Kinetics of Polyethylene Terephthalate (PET)and Polystyrene (PS) Dynamic Pyrolysis

Thermo-chemical treatment (TCT) such as pyrolysis is getting recognized as a valid route for (i) materials and valuable products and petrochemicals recovery; (ii) waste recycling; and (iii) elemental characterization. Pyrolysis is also receiving renewed attention for its operational, economical and environmental advantages. In this study, samples of polyethylene terephthalate (PET) and polystyrene (PS) were pyrolysed in a microthermobalance reactor (using a thermogravimetric-TGA setup). Both polymers were prepared and conditioned prior to experimentation. The main objective was to determine the kinetic parameters of the depolymerization reactions that occur within the thermal degradation process. Overall kinetic rate constants (ko) and activation energies (Eo) were determined using the general kinetics theory (GKT) method previously used by a number of authors. Fitted correlations were found and validated using the GKT, errors were within ± 5%. This study represents a fundamental step to pave the way towards the development of scaling relationship for the investigation of larger scale reactors relevant to industry.

Stochastic Simulation of Reaction-Diffusion Systems

Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.

Bioconversion of Biodiesel Derived Crude Glycerol by Immobilized Clostridium pasteurianum: Effect of Temperature

Batch fermentation of 5, 10 and 25 g/L biodiesel derived crude glycerol was carried out at 30, 37 and 450C by Clostridium pasteurianum cells immobilized on silica. Maximum yield of 1,3-propanediol (PDO) (0.60 mol/mol), and ethanol (0.26 mol/mol) were obtained from 10 g/L crude glycerol at 30 and 370C respectively. Maximum yield of butanol (0.28 mol/mol substrate added) was obtained at 370C with 25 g/L substrate. None of the three products were detected at 45oC even after 10 days of fermentation. Only traces of ethanol (0.01 mol/mol) were detected at 450C with 5 g/L substrate. The results obtained for 25 g/L substrate utilization were fitted in first order rate equation to obtain the values of rate constant at three different temperatures for bioconversion of glycerol. First order rate constants for bioconversion of glycerol at 30, 37 and 45oC were found to be 0.198, 0.294 and 0.029/day respectively. Activation energy (Ea) for crude glycerol bioconversion was calculated to be 57.62 kcal/mol.

Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation

In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.

An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine

In this study, effects of premixed and equivalence ratios on CO and HC emissions of a dual fuel HCCI engine are investigated. Tests were conducted on a single-cylinder engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature results in better HCCI combustion due to formation of a homogeneous mixture, therefore, all tests were carried out over the optimum intake temperature of 110-115 ºC. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge and plays an important role in HCCI combustion phasing. Experiments indicated 35 BTDC as the optimum injection timing. Varying the coolant temperature in a range of 40 to 70 ºC, better HCCI combustion was achieved at 50 ºC. Therefore, coolant temperature was maintained 50 ºC during all tests. Simultaneous investigation of effective parameters on HCCI combustion was conducted to determine optimum parameters resulting in fast transition to HCCI combustion. One of the advantages of the method studied in this study is feasibility of easy and fast transition of typical diesel engine to a dual fuel HCCI engine. Results show that increasing premixed ratio, while keeping EGR rate constant, increases unburned hydrocarbon (UHC) emissions due to quenching phenomena and trapping of premixed fuel in crevices, but CO emission decreases due to increase in CO to CO2 reactions.

Oxidation of Selected Pharmaceuticals in Water Matrices by Bromine and Chlorine

The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, hydrochlorotiazide and phenacetin) in ultrapure water and in three water matrices (a groundwater, a surface water from a public reservoir and a secondary effluent from a WWTP) was investigated. The apparent rate constants for the bromination reaction were determined as a function of the pH, and the sequence obtained for the reaction rate was amoxicillin > naproxen >> hydrochlorotiazide ≈ phenacetin ≈ metoprolol. The proposal of a kinetic mechanism, which specifies the dissociation of bromine and each pharmaceutical according to their pKa values and the pH allowed the determination of the intrinsic rate constants for every elementary reaction. The influence of the main operating conditions (pH, initial bromine dose, and the water matrix) on the degradation of pharmaceuticals was established. In addition, the presence of bromide in chlorination experiments was investigated. The presence of bromide in wastewaters and drinking waters in the range of 10 to several hundred μg L-1 accelerated slightly the oxidation of the selected pharmaceuticals during chorine disinfection.

Catalytic Decomposition of Potassium Monopersulfate. The Kinetics

Potassium monopersulfate has been decomposed in aqueous solution in the presence of Co(II). The process has been simulated by means of a mechanism based on elementary reactions. Rate constants have been taken from literature reports or, alternatively, assimilated to analogous reactions occurring in Fenton's chemistry. Several operating conditions have been successfully applied.

Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Cd (II) and Pb (II) from Aqueous Solution Using a Spore Forming Bacillus Isolated from Wastewater of a Leather Factory

The equilibrium, thermodynamics and kinetics of the biosorption of Cd (II) and Pb(II) by a Spore Forming Bacillus (MGL 75) were investigated at different experimental conditions. The Langmuir and Freundlich, and Dubinin-Radushkevich (D-R) equilibrium adsorption models were applied to describe the biosorption of the metal ions by MGL 75 biomass. The Langmuir model fitted the equilibrium data better than the other models. Maximum adsorption capacities q max for lead (II) and cadmium (II) were found equal to 158.73mg/g and 91.74 mg/g by Langmuir model. The values of the mean free energy determined with the D-R equation showed that adsorption process is a physiosorption process. The thermodynamic parameters Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes were also calculated, and the values indicated that the biosorption process was exothermic and spontaneous. Experiment data were also used to study biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients were calculated and discussed. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.

Modeling and Simulating Reaction-Diffusion Systems with State-Dependent Diffusion Coefficients

The present models and simulation algorithms of intracellular stochastic kinetics are usually based on the premise that diffusion is so fast that the concentrations of all the involved species are homogeneous in space. However, recents experimental measurements of intracellular diffusion constants indicate that the assumption of a homogeneous well-stirred cytosol is not necessarily valid even for small prokaryotic cells. In this work a mathematical treatment of diffusion that can be incorporated in a stochastic algorithm simulating the dynamics of a reaction-diffusion system is presented. The movement of a molecule A from a region i to a region j of the space is represented as a first order reaction Ai k- ! Aj , where the rate constant k depends on the diffusion coefficient. The diffusion coefficients are modeled as function of the local concentration of the solutes, their intrinsic viscosities, their frictional coefficients and the temperature of the system. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the intrinsic reaction kinetics and diffusion dynamics. To demonstrate the method the simulation results of the reaction-diffusion system of chaperoneassisted protein folding in cytoplasm are shown.