Abstract: Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.
Abstract: The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.
Abstract: Forward Osmosis (FO) polyamide thin-film composite
membranes have been prepared by interfacial polymerization using
commercial UF polyethersulfoneas membrane support. Different
interfacial polymerization times (10s, 30s and 60s) in the organic
solution containing trimesoyl chloride (TMC) at constant m-phenylenediamine
(MPD) concentration (2% w/v) were studied. The
synthesized polyamide membranes then tested for treatment of
natural organic matter (NOM) and compared to commercial Cellulose
TriAcetate (CTA) membrane. It was found that membrane prepared
with higher reaction time (30s and 60s) exhibited better membrane
performance (flux and humic acid removal) over commercial CTA
membrane.