Abstract: Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.
Abstract: Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.
Abstract: The use of wind energy for electricity generation is
growing rapidly across the world and in Portugal. However, the
geographical characteristics of the country along with the average
wind regime and with the environmental restrictions imposed to these
projects create limitations to the exploit of the onshore wind
resource. The best onshore wind spots are already committed and the
possibility of offshore wind farms in the Portuguese cost is now
being considered. This paper aims to make a contribution to the
evaluation of offshore wind power projects in Portugal. The technical
restrictions are addressed and the strategic, environmental and
financial interest of the project is analysed from the private company
and public points of view. The results suggest that additional support
schemes are required to ensure private investors interest for these
projects. Assuming an approach of direct substitution of energy
sources for electricity generation, the avoided CO2 equivalent
emissions for an offshore wind power project were quantified. Based
on the conclusions, future research is proposed to address the
environmental and social impacts of these projects.