Reliability Analysis of k-out-of-n : G System Using Triangular Intuitionistic Fuzzy Numbers

In the present paper, we analyze the vague reliability of k-out-of-n : G system (particularly, series and parallel system) with independent and non-identically distributed components, where the reliability of the components are unknown. The reliability of each component has been estimated using statistical confidence interval approach. Then we converted these statistical confidence interval into triangular intuitionistic fuzzy numbers. Based on these triangular intuitionistic fuzzy numbers, the reliability of the k-out-of-n : G system has been calculated. Further, in order to implement the proposed methodology and to analyze the results of k-out-of-n : G system, a numerical example has been provided.

Intuitionistic Fuzzy Implicative Ideals with Thresholds (λ,μ) of BCI-Algebras

The aim of this paper is to introduce the notion of intuitionistic fuzzy implicative ideals with thresholds (λ, μ) of BCI-algebras and to investigate its properties and characterizations.

Pricing Strategy Selection Using Fuzzy Linear Programming

Marketing establishes a communication network between producers and consumers. Nowadays, marketing approach is customer-focused and products are directly oriented to meet customer needs. Marketing, which is a long process, needs organization and management. Therefore strategic marketing planning becomes more and more important in today’s competitive conditions. Main focus of this paper is to evaluate pricing strategies and select the best pricing strategy solution while considering internal and external factors influencing the company’s pricing decisions associated with new product development. To reflect the decision maker’s subjective preference information and to determine the weight vector of factors (attributes), the fuzzy linear programming technique for multidimensional analysis of preference (LINMAP) under intuitionistic fuzzy (IF) environments is used.

Multivalued Knowledge-Base based on Multivalued Datalog

The basic aim of our study is to give a possible model for handling uncertain information. This model is worked out in the framework of DATALOG. The concept of multivalued knowledgebase will be defined as a quadruple of any background knowledge; a deduction mechanism; a connecting algorithm, and a function set of the program, which help us to determine the uncertainty levels of the results. At first the concept of fuzzy Datalog will be summarized, then its extensions for intuitionistic- and interval-valued fuzzy logic is given and the concept of bipolar fuzzy Datalog is introduced. Based on these extensions the concept of multivalued knowledge-base will be defined. This knowledge-base can be a possible background of a future agent-model.

Hutchinson-Barnsley Operator in Intuitionistic Fuzzy Metric Spaces

The main purpose of this paper is to prove the intuitionistic fuzzy contraction properties of the Hutchinson-Barnsley operator on the intuitionistic fuzzy hyperspace with respect to the Hausdorff intuitionistic fuzzy metrics. Also we discuss about the relationships between the Hausdorff intuitionistic fuzzy metrics on the intuitionistic fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces to the intuitionistic fuzzy metric spaces.

Intuitionistic Fuzzy Multisets And Its Application in Medical Diagnosis

In this paper a new concept named Intuitionistic Fuzzy Multiset is introduced. The basic operations on Intuitionistic Fuzzy Multisets such as union, intersection, addition, multiplication etc. are discussed. An application of Intuitionistic Fuzzy Multiset in Medical diagnosis problem using a distance function is discussed in detail.

Landowers' Participation Behavior on the Payment for Environmental Service (PES): Evidences from Taiwan

To respond to the Kyoto Protocol, the policy of Payment for Environmental Service (PES), which was entitled “Plain Landscape Afforestation Program (PLAP)", was certified by Executive Yuan in Taiwan on 31 August 2001 and has been implementing for six years since 1 January 2002. Although the PLAP has received a lot of positive comments, there are still many difficulties during the process of implementation, such as insufficient technology for afforestation, private landowners- low interests in participating in PLAP, insufficient subsidies, and so on, which are potential threats that hinder the PLAP from moving forward in future. In this paper, selecting Ping-Tung County in Taiwan as a sample region and targeting those private landowners with and without intention to participate in the PLAP, respectively, we conduct an empirical analysis based on the Logit model to investigate the factors that determine whether those private landowners join the PLAP, so as to realize the incentive effects of the PLAP upon the personal decision on afforestation. The possible factors that might determine private landowner-s participation in the PLAP include landowner-s characteristics, cropland characteristics, as well as policy factors. Among them, the policy factors include afforestation subsidy amount (+), duration of afforestation subsidy (+), the rules on adjoining and adjacent areas (+), and so on, which do not reach the remarkable level in statistics though, but the directions of variable signs are consistent with the intuition behind the policy. As for the landowners- characteristics, each of age (+), education level (–), and annual household income (+) variables reaches 10% of the remarkable level in statistics; as for the cropland characteristics, each of cropland area (+), cropland price (–), and the number of cropland parcels (–) reaches 1% of the remarkable level in statistics. In light of the above, the cropland characteristics are the dominate factor that determines the probability of landowner-s participation in the PLAP. In the Logit model established by this paper, the probability of correctly estimating nonparticipants is 98%, the probability of correctly estimating the participants is 71.8%, and the probability for the overall estimation is 95%. In addition, Hosmer-Lemeshow test and omnibus test also revealed that the Logit model in this paper may provide fine goodness of fit and good predictive power in forecasting private landowners- participation in this program. The empirical result of this paper expects to help the implementation of the afforestation programs in Taiwan.

Intuitionistic Fuzzy Dual Positive Implicative Hyper K- Ideals

In this note first we define the notions of intuitionistic fuzzy dual positive implicative hyper K-ideals of types 1,2,3,4 and intuitionistic fuzzy dual hyper K-ideals. Then we give some classifications about these notions according to the level subsets. Also by given some examples we show that these notions are not equivalent, however we prove some theorems which show that there are some relationships between these notions. Finally we define the notions of product and antiproduct of two fuzzy subsets and then give some theorems about the relationships between the intuitionistic fuzzy dual positive implicative hyper K-ideal of types 1,2,3,4 and their (anti-)products, in particular we give a main decomposition theorem.

A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface

Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.

Overriding Moral Intuitions – Does It Make Us Immoral? Dual-Process Theory of Higher Cognition Account for Moral Reasoning

Moral decisions are considered as an intuitive process, while conscious reasoning is mostly used only to justify those intuitions. This problem is described in few different dual-process theories of mind, that are being developed e.g. by Frederick and Kahneman, Stanovich and Evans. Those theories recently evolved into tri-process theories with a proposed process that makes ultimate decision or allows to paraformal processing with focal bias.. Presented experiment compares the decision patterns to the implications of those models. In presented study participants (n=179) considered different aspects of trolley dilemma or its footbridge version and decided after that. Results show that in the control group 70% of people decided to use the lever to change tracks for the running trolley, and 20% chose to push the fat man down the tracks. In contrast, after experimental manipulation almost no one decided to act. Also the decision time difference between dilemmas disappeared after experimental manipulation. The result supports the idea of three co-working processes: intuitive (TASS), paraformal (reflective mind) and algorithmic process.

Analysis on Fractals in Intuitionistic Fuzzy Metric Spaces

This paper investigates the fractals generated by the dynamical system of intuitionistic fuzzy contractions in the intuitionistic fuzzy metric spaces by generalizing the Hutchinson-Barnsley theory. We prove some existence and uniqueness theorems of fractals in the standard intuitionistic fuzzy metric spaces by using the intuitionistic fuzzy Banach contraction theorem. In addition to that, we analyze some results on intuitionistic fuzzy fractals in the standard intuitionistic fuzzy metric spaces with respect to the Hausdorff intuitionistic fuzzy metrics.

On Internet Access Technology Specification Model

Internet Access Technologies (IAT) provide a means through which Internet can be accessed. The choice of a suitable Internet technology is increasingly becoming an important issue to ISP clients. Currently, the choice of IAT is based on discretion and intuition of the concerned managers and the reliance on ISPs. In this paper we propose a model and designs algorithms that are used in the Internet access technology specification. In the proposed model, three ranking approaches are introduced; concurrent ranking, stepwise ranking and weighted ranking. The model ranks the IAT based on distance measures computed in ascending order while the global ranking system assigns weights to each IAT according to the position held in each ranking technique, determines the total weight of a particular IAT and ranks them in descending order. The final output is an objective ranking of IAT in descending order.

Reliability Evaluation using Triangular Intuitionistic Fuzzy Numbers Arithmetic Operations

In general fuzzy sets are used to analyze the fuzzy system reliability. Here intuitionistic fuzzy set theory for analyzing the fuzzy system reliability has been used. To analyze the fuzzy system reliability, the reliability of each component of the system as a triangular intuitionistic fuzzy number is considered. Triangular intuitionistic fuzzy number and their arithmetic operations are introduced. Expressions for computing the fuzzy reliability of a series system and a parallel system following triangular intuitionistic fuzzy numbers have been described. Here an imprecise reliability model of an electric network model of dark room is taken. To compute the imprecise reliability of the above said system, reliability of each component of the systems is represented by triangular intuitionistic fuzzy numbers. Respective numerical example is presented.

Intuition Operator: Providing Genomes with Reason

In this contribution, the use of a new genetic operator is proposed. The main advantage of using this operator is that it is able to assist the evolution procedure to converge faster towards the optimal solution of a problem. This new genetic operator is called ''intuition'' operator. Generally speaking, one can claim that this operator is a way to include any heuristic or any other local knowledge, concerning the problem, that cannot be embedded in the fitness function. Simulation results show that the use of this operator increases significantly the performance of the classic Genetic Algorithm by increasing the convergence speed of its population.

Intuitionistic Fuzzy Points in Semigroups

The notion of intuitionistic fuzzy sets was introduced by Atanassov as a generalization of the notion of fuzzy sets. Y.B. Jun and S.Z. Song introduced the notion of intuitionistic fuzzy points. In this paper we find some relations between the intuitionistic fuzzy ideals of a semigroup S and the set of all intuitionistic fuzzy points of S.

A New Condition for Conflicting Bifuzzy Sets Based On Intuitionistic Evaluation

Fuzzy sets theory affirmed that the linguistic value for every contraries relation is complementary. It was stressed in the intuitionistic fuzzy sets (IFS) that the conditions for contraries relations, which are the fuzzy values, cannot be greater than one. However, complementary in two contradict phenomena are not always true. This paper proposes a new idea condition for conflicting bifuzzy sets by relaxing the condition of intuitionistic fuzzy sets. Here, we will critically forward examples using triangular fuzzy number in formulating a new condition for conflicting bifuzzy sets (CBFS). Evaluation of positive and negative in conflicting phenomena were calculated concurrently by relaxing the condition in IFS. The hypothetical illustration showed the applicability of the new condition in CBFS for solving non-complement contraries intuitionistic evaluation. This approach can be applied to any decision making where conflicting is very much exist.

Implementing an Intuitive Reasoner with a Large Weather Database

In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.

Mining Frequent Patterns with Functional Programming

Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.

Ranking Fuzzy Numbers Based on Lexicographical Ordering

Although so far, many methods for ranking fuzzy numbers have been discussed broadly, most of them contained some shortcomings, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination. The motivation of this study is to develop a model for ranking fuzzy numbers based on the lexicographical ordering which provides decision-makers with a simple and efficient algorithm to generate an ordering founded on a precedence. The main emphasis here is put on the ease of use and reliability. The effectiveness of the proposed method is finally demonstrated by including a comprehensive comparing different ranking methods with the present one.

A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making

The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.