Breaking the Legacy of Silence: A Feminist Perspective on Therapist Attraction to Clients

Views on therapists- attraction have influenced the ethical and professional development of the mental health fields. Because the majority of therapist attraction literature (63.6%) has been conducted from a psychoanalytic standpoint, approaches to attraction from feminist perspectives have not been adequately developed. Considering the lack of a feminist voice regarding attraction, this article attempts to offer a feminist perspective on this issue. The purpose of this article is to offer a feminist perspective on the phenomenon of attraction in order to raise awareness about the importance of power inequalities, intersectionalities, contextual variables and the need for action in the field.

On Bounds For The Zeros of Univariate Polynomial

Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated.Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds for the moduli of the zeros of complex polynomials. That means, we provide disks in the complex plane where all zeros of a complex polynomial are situated. Such bounds are extremely useful for obtaining a priori assertations regarding the location of zeros of polynomials. Based on the proven bounds and a test set of polynomials, we present an experimental study to examine which bound is optimal.

Ruin Probabilities with Dependent Rates of Interest and Autoregressive Moving Average Structures

This paper studies ruin probabilities in two discrete-time risk models with premiums, claims and rates of interest modelled by three autoregressive moving average processes. Generalized Lundberg inequalities for ruin probabilities are derived by using recursive technique. A numerical example is given to illustrate the applications of these probability inequalities.

An LMI Approach of Robust H∞ Fuzzy State-Feedback Controller Design for HIV/AIDS Infection System with Dual Drug Dosages

This paper examines the problem of designing robust H controllers for for HIV/AIDS infection system with dual drug dosages described by a Takagi-Sugeno (S) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop an H controller which guarantees the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for the system. A sufficient condition of the controller for this system is given in term of Linear Matrix Inequalities (LMIs). The effectiveness of the proposed controller design methodology is finally demonstrated through simulation results. It has been shown that the anti-HIV vaccines are critically important in reducing the infected cells.

Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach

This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.

Robust BIBO Stabilization Analysis for Discrete-time Uncertain System

The discrete-time uncertain system with time delay is investigated for bounded input bounded output (BIBO). By constructing an augmented Lyapunov function, three different sufficient conditions are established for BIBO stabilization. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Two numerical examples are provided to demonstrate the effectiveness of the derived results.

Stability of Interconnected Systems under Structural Perturbation: Decomposition-Aggregation Approach

In this paper, the decomposition-aggregation method is used to carry out connective stability criteria for general linear composite system via aggregation. The large scale system is decomposed into a number of subsystems. By associating directed graphs with dynamic systems in an essential way, we define the relation between system structure and stability in the sense of Lyapunov. The stability criteria is then associated with the stability and system matrices of subsystems as well as those interconnected terms among subsystems using the concepts of vector differential inequalities and vector Lyapunov functions. Then, we show that the stability of each subsystem and stability of the aggregate model imply connective stability of the overall system. An example is reported, showing the efficiency of the proposed technique.

New Stabilization for Switched Neutral Systems with Perturbations

This paper addresses the stabilization issues for a class of uncertain switched neutral systems with nonlinear perturbations. Based on new classes of piecewise Lyapunov functionals, the stability assumption on all the main operators or the convex combination of coefficient matrices is avoid, and a new switching rule is introduced to stabilize the neutral systems. The switching rule is designed from the solution of the so-called Lyapunov-Metzler linear matrix inequalities. Finally, three simulation examples are given to demonstrate the significant improvements over the existing results.

Advanced Gronwall-Bellman-Type Integral Inequalities and Their Applications

In this paper, some new nonlinear generalized Gronwall-Bellman-Type integral inequalities with mixed time delays are established. These inequalities can be used as handy tools to research stability problems of delayed differential and integral dynamic systems. As applications, based on these new established inequalities, some p-stable results of a integro-differential equation are also given. Two numerical examples are presented to illustrate the validity of the main results.

Delay-Distribution-Dependent Stability Criteria for BAM Neural Networks with Time-Varying Delays

This paper is concerned with the delay-distributiondependent stability criteria for bidirectional associative memory (BAM) neural networks with time-varying delays. Based on the Lyapunov-Krasovskii functional and stochastic analysis approach, a delay-probability-distribution-dependent sufficient condition is derived to achieve the globally asymptotically mean square stable of the considered BAM neural networks. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulation is given to demonstrate the usefulness and effectiveness of the proposed results.

The Household-Based Socio-Economic Index for Every District in Peninsular Malaysia

Deprivation indices are widely used in public health study. These indices are also referred as the index of inequalities or disadvantage. Even though, there are many indices that have been built before, it is believed to be less appropriate to use the existing indices to be applied in other countries or areas which had different socio-economic conditions and different geographical characteristics. The objective of this study is to construct the index based on the geographical and socio-economic factors in Peninsular Malaysia which is defined as the weighted household-based deprivation index. This study has employed the variables based on household items, household facilities, school attendance and education level obtained from Malaysia 2000 census report. The factor analysis is used to extract the latent variables from indicators, or reducing the observable variable into smaller amount of components or factor. Based on the factor analysis, two extracted factors were selected, known as Basic Household Amenities and Middle-Class Household Item factor. It is observed that the district with a lower index values are located in the less developed states like Kelantan, Terengganu and Kedah. Meanwhile, the areas with high index values are located in developed states such as Pulau Pinang, W.P. Kuala Lumpur and Selangor.

A Sandwich-type Theorem with Applications to Univalent Functions

In the present paper, we obtain a sandwich-type theorem. As applications of our main result, we discuss the univalence and starlikeness of analytic functions in terms of certain differential subordinations and differential inequalities.

Controlled Synchronization of an Array of Nonlinear System with Time Delays

In this paper, we propose synchronization of an array of nonlinear systems with time delays. The array of systems is decomposed into isolated systems to establish appropriate Lyapunov¬Krasovskii functional. Using the Lyapunov-Krasovskii functional, a sufficient condition for the synchronization is derived in terms of LMIs(Linear Matrix Inequalities). Delayed feedback control gains are obtained by solving the sufficient condition. Numerical examples are given to show the validity the proposed method.

Multiple Positive Periodic Solutions to a Periodic Predator-Prey-Chain Model with Harvesting Terms

In this paper, a class of predator-prey-chain model with harvesting terms are studied. By using Mawhin-s continuation theorem of coincidence degree theory and some skills of inequalities, some sufficient conditions are established for the existence of eight positive periodic solutions. Finally, an example is presented to illustrate the feasibility and effectiveness of the results.

Modeling Hybrid Systems with MLD Approach and Analysis of the Model Size and Complexity

Recently, a great amount of interest has been shown in the field of modeling and controlling hybrid systems. One of the efficient and common methods in this area utilizes the mixed logicaldynamical (MLD) systems in the modeling. In this method, the system constraints are transformed into mixed-integer inequalities by defining some logic statements. In this paper, a system containing three tanks is modeled as a nonlinear switched system by using the MLD framework. Comparing the model size of the three-tank system with that of a two-tank system, it is deduced that the number of binary variables, the size of the system and its complexity tremendously increases with the number of tanks, which makes the control of the system more difficult. Therefore, methods should be found which result in fewer mixed-integer inequalities.

Mean Codeword Lengths and Their Correspondence with Entropy Measures

The objective of the present communication is to develop new genuine exponentiated mean codeword lengths and to study deeply the problem of correspondence between well known measures of entropy and mean codeword lengths. With the help of some standard measures of entropy, we have illustrated such a correspondence. In literature, we usually come across many inequalities which are frequently used in information theory. Keeping this idea in mind, we have developed such inequalities via coding theory approach.

Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.