Abstract: A geophysical investigation involving geoelectric depths sounding has been conducted as pre-foundation study in part of Ilorin, Nigeria. The area is underlain by the Precambrian basement complex rocks. 15 sounding stations were established along five traverses. The Vertical Electrical Sounding (VES) (three-five) conducted along each of the traverses was subjected to computer iteration using IP2Win software. Three -five subsurface geologic layers were delineated in the study area. These include the topsoil with resistivity and thickness values ranging from 103 Ωm-210 Ωm and 0 m-1 m; lateritic (117 Ωm-590 Ωm and 1 m-4.7 m); sandy clay (137 – 859 Ωm and 2.9 m – 4.3 m); weathered (60.5 Ωm to 2539 Ωm and 3,2 m-10 m) and fresh basement (2253-∞ and 7.1 m-∞) respectively. The resistivity pseudosection shows continuous high resistivity zone on the surface. Resistivity of this layer from depth 0-5 m varies from 300-800 Ωm along traverse 1 and 2. Hence, this layer is rated competent as it has the ability to support engineering structure. However, along traverse 1, very low resistive layer occurs between VES 5 and 15 with resistivity values ranging from 30 Ωm-70 Ωm. This layer was rated incompetent based on the competence rating. This study revealed the importance of geophysical survey as a pre-construction engineering survey at any civil engineering site since it can reliably evaluate the competence of the subsurface geomaterials.
Abstract: Electrical resistivity investigation was conducted in vicinity of Tarbela Ghazi, in order to study the subsurface layer with a view of determining the depth to the aquifer and thickness of groundwater potential zones. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at 16 VES stations. Well logging data at four tube wells have been used to mark the super saturated zones with great discharge rate. The present paper shows a geoelectrical identification of the lithology and an estimate of the relationship between the resistivity and Dar Zarrouk parameters (transverse unit resistance and longitudinal unit conductance). The VES results revealed both homogeneous and heterogeneous nature of the subsurface strata. Aquifer is unconfined to confine in nature, and at few locations though perched aquifer has been identified, groundwater potential zones are developed in unconsolidated deposits layers and more than seven geo-electric layers are observed at some VES locations. Saturated zones thickness ranges from 5 m to 150 m, whereas at few area aquifer is beyond 150 m thick. The average anisotropy, transvers resistance and longitudinal conductance values are 0.86 %, 35750.9821 Ω.m2, 0.729 Siemens, respectively. The transverse unit resistance values fluctuate all over the aquifer system, whereas below at particular depth high values are observed, that significantly associated with the high transmissivity zones. The groundwater quality in all analyzed samples is below permissible limit according to World Health Standard (WHO).
Abstract: A geoelectric survey was carried out in some parts of
Angwan Gwari, an outskirt of Lapai Local Government Area on
Niger State which belongs to the Nigerian Basement Complex, with
the aim of evaluating the soil corrosivity, aquifer transmissivity and
protective capacity of the area from which aquifer characterisation
was made. The G41 Resistivity Meter was employed to obtain fifteen
Schlumberger Vertical Electrical Sounding data along profiles in a
square grid network. The data were processed using interpex 1-D
sounding inversion software, which gives vertical electrical sounding
curves with layered model comprising of the apparent resistivities,
overburden thicknesses, and depth. This information was used to
evaluate longitudinal conductance and transmissivities of the layers.
The results show generally low resistivities across the survey area
and an average longitudinal conductance variation from
0.0237Siemens in VES 6 to 0.1261Siemens in VES 15 with almost
the entire area giving values less than 1.0 Siemens. The average
transmissivity values range from 96.45 Ω.m2 in VES 4 to 299070
Ω.m2 in VES 1. All but VES 4 and VES14 had an average
overburden greater than 400 Ω.m2, these results suggest that the
aquifers are highly permeable to fluid movement within, leading to
the possibility of enhanced migration and circulation of contaminants
in the groundwater system and that the area is generally corrosive.
Abstract: The objective of this paper is to study the electrical
resistivity complexity between field and laboratory measurement, in
order to improve the effectiveness of data interpretation for
geophysical ground resistivity survey. The geological outcrop in
Penang, Malaysia with an obvious layering contact was chosen as the
study site. Two dimensional geoelectrical resistivity imaging were
used in this study to maps the resistivity distribution of subsurface,
whereas few subsurface sample were obtained for laboratory
advance. In this study, resistivity of samples in original conditions is
measured in laboratory by using time domain low-voltage technique,
particularly for granite core sample and soil resistivity measuring set
for soil sample. The experimentation results from both schemes are
studied, analyzed, calibrated and verified, including basis and
correlation, degree of tolerance and characteristics of substance.
Consequently, the significant different between both schemes is
explained comprehensively within this paper.