Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study

Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction.

Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites

The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.

Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation. 

Development of a Simple laser-based 2D Compensating System for the Contouring Accuracy of Machine Tools

The dynamical contouring error is a critical element for the accuracy of machine tools. The contouring error is defined as the difference between the processing actual path and commanded path, which is implemented by following the command curves from feeding driving system in machine tools. The contouring error is resulted from various factors, such as the external loads, friction, inertia moment, feed rate, speed control, servo control, and etc. Thus, the study proposes a 2D compensating system for the contouring accuracy of machine tools. Optical method is adopted by using stable frequency laser diode and the high precision position sensor detector (PSD) to performno-contact measurement. Results show the related accuracy of position sensor detector (PSD) of 2D contouring accuracy compensating system was ±1.5 μm for a calculated range of ±3 mm, and improvement accuracy is over 80% at high-speed feed rate.

Mathematical Modeling to Predict Surface Roughness in CNC Milling

Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.